Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models.
The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts and techniques of the Bayesian paradigm from a practical point of view using real case studies. They emphasize how hierarchical Bayesian modeling supports multidimensional models involving complex interactions between parameters and latent variables. Data sets, exercises, and R and WinBUGS codes are available on the authors’ website.
This book shows how Bayesian statistical modeling provides an intuitive way to organize data, test ideas, investigate competing hypotheses, and assess degrees of confidence of predictions. It also illustrates how conditional reasoning can dismantle a complex reality into more understandable pieces. As conditional reasoning is intimately linked with Bayesian thinking, considering hierarchical models within the Bayesian setting offers a unified and coherent framework for modeling, estimation, and prediction.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Éric Parent is head of the Research Laboratory for Risk Management in Environmental Sciences (Team MORSE) and a professor in applied statistics and probabilistic modeling for environmental engineering at the National Institute for Rural Engineering, Water and Forest Management (ENGREF/AgroParisTech) in Paris, France. Dr. Parent’s research encompasses Bayesian theory and applications, with special emphasis on environmental systems modeling.
Étienne Rivot is a researcher in the Fisheries Ecology Laboratory at Agrocampus Ouest in Rennes, France. Dr. Rivot’s research focuses on the application of Bayesian statistical modeling for the analysis of ecological data, inference, and predictions.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,11 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 13,74 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Second Story Books, ABAA, Rockville, MD, USA
Hardcover. Octavo, xii, xvi, xviii, 405 pages. In Very Good minus condition. Bound in the publisher's black/green cloth with white lettering to the spine. Boards have few instances showing some wear including bumped corners, tiny, minor wear to the edges and slight scuffs/scratches exteriorly. Text block has faint finger marks to the edges and light bumping to the head fore edge. Very light wear to the end papers. Illustrated. NOTE: Shelved in Netdesk Column F, ND-F. 1378246. FP New Rockville Stock. Artikel-Nr. 1378246
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781584889199_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 596345186
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 352 pages. 9.30x6.30x1.00 inches. In Stock. Artikel-Nr. x-1584889195
Anzahl: 2 verfügbar