TIME SERIES ANALYSIS with MATLAB. ARIMA and ARIMAX models

0 durchschnittliche Bewertung
( 0 Bewertungen bei GoodReads )
 
9781502346384: TIME SERIES ANALYSIS with MATLAB. ARIMA and ARIMAX models
Vom Verlag:

MATLAB Econometrics Toolbox provides functions for modeling economic data You can select and calibrate economic models for simulation and forecasting Time series capabilities include univariate ARMAX/GARCH composite models with several GARCH variants, multivariate VARMAX models, and cointegration analysis The toolbox provides Monte Carlo methods for simulating systems of linear and nonlinear stochastic differential equations and a variety of diagnostics for model selection, including hypothesis, unit root, and stationarity tests. This book develops, among others, the following topics: Conditional Mean Models for Stationary Processes Specify Conditional Mean Models Using ARIMA Autoregressive Model AR(p) Model AR Model with No Constant Term AR Model with Nonconsecutive Lags AR Model with Known Parameter Values AR Model with a t Innovation Distribution Moving Average Model MA(q) Model Invertibility of the MA Model MA Model Specifications MA Model with No Constant Term MA Model with Nonconsecutive Lags MA Model with Known Parameter Values MA Model with a t Innovation Distribution Autoregressive Moving Average Model ARMA(p,q) Model Stationarity and Invertibility of the ARMA Model ARMA Model Specifications ARMA Model with No Constant Term ARMA Model with Known Parameter Values ARIMA Model ARIMA Model Specifications ARIMA Model with Known Parameter Values Multiplicative ARIMA Model Multiplicative ARIMA Model Specifications Seasonal ARIMA Model with No Constant Term Seasonal ARIMA Model with Known Parameter Values Specify Multiplicative ARIMA Model ARIMA Model Including Exogenous Covariates ARIMAX(p,D,q) Model ARIMAX Model Specifications Specify Conditional Mean Model Innovation Distribution Specify Conditional Mean and Variance Model Impulse Response Function Plot Impulse Response Function Box-Jenkins Differencing vs ARIMA Estimation Maximum Likelihood Estimation for Conditional Mean Models Conditional Mean Model Estimation with Equality Constraints Initial Values for Conditional Mean Model Estimation Optimization Settings for Conditional Mean Model Estimation Estimate Multiplicative ARIMA Model Model Seasonal Lag Effects Using Indicator Variables Forecast IGD Rate Using ARIMAX Model Estimate Conditional Mean and Variance Models Choose ARMA Lags Using BIC Infer Residuals for Diagnostic Checking Monte Carlo Simulation of Conditional Mean Models Presample Data for Conditional Mean Model Simulation Transient Effects in Conditional Mean Model Simulations Simulate Stationary Processes Simulate an AR Process Simulate an MA Process Simulate Trend-Stationary and Difference-Stationary Processes Simulate Multiplicative ARIMA Models Simulate Conditional Mean and Variance Models Monte Carlo Forecasting of Conditional Mean Models Monte Carlo Forecasts MMSE Forecasting of Conditional Mean Models Forecast Error Convergence of AR Forecasts Forecast Multiplicative ARIMA Model Forecast Conditional Mean and Variance Model

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben