This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architecture’s attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.
FEATURES
• Covers the full lifecycle of working with LLMs, from model selection to deployment
• Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization
• Teaches readers to enhance model efficiency with advanced optimization techniques
• Includes companion files with code and images -- available from the publisher
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Oswald Campesato (San Francisco, CA) specializes in Deep Learning, Python, Data Science, and Generative AI. He is the author/co-author of over forty-five books including Google Gemini for Python, Large Language Models, and GPT-4 for Developers (all Mercury Learning).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Books From California, Simi Valley, CA, USA
paperback. Zustand: Very Good. Artikel-Nr. mon0003836345
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. DB-9781501523564
Anzahl: 1 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. DB-9781501523564
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1012 pages. 6.00x1.90x9.00 inches. In Stock. Artikel-Nr. __1501523562
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Large Language Models for Developers | A Prompt-based Exploration of LLMs | Oswald Campesato | Taschenbuch | 1012 S. | Englisch | 2025 | De Gruyter Saur | EAN 9781501523564 | Verantwortliche Person für die EU: Walter de Gruyter GmbH, De Gruyter GmbH, Genthiner Str. 13, 10785 Berlin, productsafety[at]degruyterbrill[dot]com | Anbieter: preigu. Artikel-Nr. 131497130
Anzahl: 1 verfügbar