Verwandte Artikel zu Time Series Clustering and Classification (Chapman...

Time Series Clustering and Classification (Chapman & Hall/CRC Computer Science & Data Analysis) - Hardcover

 
9781498773218: Time Series Clustering and Classification (Chapman & Hall/CRC Computer Science & Data Analysis)

Inhaltsangabe

The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data.

Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students.

Features

  • Provides an overview of the methods and applications of pattern recognition of time series
  • Covers a wide range of techniques, including unsupervised and supervised approaches
  • Includes a range of real examples from medicine, finance, environmental science, and more
  • R and MATLAB code, and relevant data sets are available on a supplementary website

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Elizabeth Ann Maharaj is an Associate Professor in the Department of Econometrics and Business Statistics at Monash University, Australia. She has a Ph.D. from Monash University on the Pattern Recognition of Time Series. Ann is an elected member of the International Statistical Institute (ISI), a member of the International Association of Statistical Computing (IASC) and of the Statistical Society of Australia (SSA). She is also an accredited statistician with the SSA. Ann’s main research interests are in time series classification, wavelets analysis, fuzzy classification and interval time series analysis. She has also worked on research projects in climatology, environmental science, labour markets, human mobility and finance.

Pierpaolo D'Urso is a Full Professor of Statistics at Sapienza - University of Rome. He is the chair of the Department of Social and Economic Sciences, Sapienza - University of Rome. He received his Ph.D. in Statistics and his bachelor's degree in Statistics both from Sapienza. He is an associate editor and a member of the editorial board of several journals. He has been member of several program committees of international conferences and guest editor of special issues. His recent research activity is focus on fuzzy clustering, clustering and classification of time series, clustering of complex structures of data, and statistical methods for marketing, local labour systems, electoral studies and environmental monitoring.

Jorge Caiado has a Ph.D. in Applied Mathematics to Economics and Management. He is a Professor of Econometrics and Forecasting Methods at the Lisbon School of Economics and Management (ISEG) and a Researcher at the Centre for Applied Mathematics and Economics. His research in econometrics, finance, time series analysis, forecasting methods and statistical software has led to numerous publications in scientific journals and books. He serves as an econometric and statistical consultant and trainer for numerous companies and organizations including central banks, commercial and investment banks, bureau of statistics, bureau of economic analysis, transportation and logistics companies, health companies and insurance companies. He is also a co-founder and partner of GlobalSolver.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagChapman and Hall/CRC
  • Erscheinungsdatum2019
  • ISBN 10 1498773214
  • ISBN 13 9781498773218
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten244
  • Kontakt zum HerstellerNicht verfügbar

EUR 5,85 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781032093499: Time Series Clustering and Classification (Chapman & Hall/CRC Computer Science & Data Analysis)

Vorgestellte Ausgabe

ISBN 10:  1032093498 ISBN 13:  9781032093499
Verlag: Chapman & Hall, 2021
Softcover

Suchergebnisse für Time Series Clustering and Classification (Chapman...

Beispielbild für diese ISBN

Maharaj, Elizabeth Ann; D'Urso, Pierpaolo; Caiado, Jorge
Verlag: Chapman and Hall/CRC, 2019
ISBN 10: 1498773214 ISBN 13: 9781498773218
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781498773218_new

Verkäufer kontaktieren

Neu kaufen

EUR 238,38
Währung umrechnen
Versand: EUR 5,85
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Maharaj, Elizabeth Ann/ Caiado, Jorge/ D'urso, Pierpaolo
Verlag: Chapman & Hall, 2019
ISBN 10: 1498773214 ISBN 13: 9781498773218
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 240 pages. 9.25x6.25x0.50 inches. In Stock. Artikel-Nr. x-1498773214

Verkäufer kontaktieren

Neu kaufen

EUR 301,31
Währung umrechnen
Versand: EUR 11,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb