Verwandte Artikel zu Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces,...

Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix Space and Generalizations - Softcover

 
9781493980420: Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix Space and Generalizations

Críticas

“Advanced graduate students and beginners in harmonic analysis on symmetric spaces are surely motivated and attracted by abundant examples, relevant history, and exercises. Excellent references in each section are useful for experts.” (Takeshi Kawazoe, Mathematical Reviews, August, 2017)

“It is very nice to have available, now, the second, updated version of the entire set ... . Audrey Terras has done the mathematical community (and not just number theorists and modular formers) a great service: these books are a major contribution on several fronts, including the pedagogical one. They are of course also excellent references for various mathematical themes that are otherwise scattered all through the recent literature.” (Michael Berg, MAA Reviews, maa.org, July, 2016)

Reseña del editor

This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices.

Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank.  Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St.

P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains.

Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups Γ (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2018
  • ISBN 10 1493980424
  • ISBN 13 9781493980420
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten504

EUR 14,24 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781493934065: Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations

Vorgestellte Ausgabe

ISBN 10:  1493934066 ISBN 13:  9781493934065
Verlag: Springer, 2016
Hardcover

Suchergebnisse für Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces,...

Beispielbild für diese ISBN

Terras, Audrey
Verlag: Springer, 2018
ISBN 10: 1493980424 ISBN 13: 9781493980420
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781493980420_new

Verkäufer kontaktieren

Neu kaufen

EUR 74,96
Währung umrechnen
Versand: EUR 14,24
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Audrey Terras
ISBN 10: 1493980424 ISBN 13: 9781493980420
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled 'Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half 'plane' and the quaternionic upper half 'plane'. In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices.Manycorrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory. Artikel-Nr. 9781493980420

Verkäufer kontaktieren

Neu kaufen

EUR 69,16
Währung umrechnen
Versand: EUR 31,77
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb