Verwandte Artikel zu Optimization Techniques in Statistics

Optimization Techniques in Statistics - Softcover

 
9781493307425: Optimization Techniques in Statistics

Inhaltsangabe

Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including: Finding maximum likelihood estimatesMarkov decision processesProgramming methods used to optimize monitoring of patients in hospitalsDerivation of the Neyman-Pearson lemmaThe search for optimal designsSimulation of a steel millSuitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including: Finding maximum likelihood estimatesMarkov decision processesProgramming methods used to optimize monitoring of patients in hospitalsDerivation of the Neyman-Pearson lemmaThe search for optimal designsSimulation of a steel millSuitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 11,61 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780126045550: Optimization Techniques in Statistics (Statistical Modeling and Decision Science)

Vorgestellte Ausgabe

ISBN 10:  0126045550 ISBN 13:  9780126045550
Verlag: Academic Press Inc, 1994
Hardcover

Suchergebnisse für Optimization Techniques in Statistics

Beispielbild für diese ISBN

Jagdish S. Rustagi
Verlag: Academic Press, 2014
ISBN 10: 1493307428 ISBN 13: 9781493307425
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 376 pages. 9.25x6.00x0.85 inches. In Stock. Artikel-Nr. zk1493307428

Verkäufer kontaktieren

Neu kaufen

EUR 137,98
Währung umrechnen
Versand: EUR 11,61
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb