Verwandte Artikel zu Introducing MLOps: How to Scale Machine Learning in...

Introducing MLOps: How to Scale Machine Learning in the Enterprise - Softcover

 
9781492083290: Introducing MLOps: How to Scale Machine Learning in the Enterprise

Inhaltsangabe

More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact.

This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout.

This book helps you:

  • Fulfill data science value by reducing friction throughout ML pipelines and workflows
  • Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy
  • Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable
  • Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Mark Treveil has designed products in fields as diverse as telecoms, banking, and online trading. His own startup led a revolution in governance in the UK local government, where it still dominates. He is now part of the Dataiku Product Team based in Paris.

Nicolas Omont is VP of operations at Artelys where he is developing mathematical optimization solutions for energy and transport. He previously held the role of Dataiku Product Manager for ML and advanced analytics. He holds a PhD in Computer Science, and he’s been working in operations research and statistics for the past 15 years, mainly in the telecommunications and energy utility sectors.

Clément Stenac is a passionate software engineer, CTO and co-founder at Dataiku. He oversees the design, development of the Dataiku DSS Entreprise AI Platform. Clément was previously head of product development at Exalead, leading the design and implementation of web-scale search engine software. He also has extensive experience with open source software, as a former developer of the VideoLAN (VLC) and Debian projects.

Kenji Lefevre is VP Product at Dataiku. He oversees the product roadmap and the user experience of the Dataiku DSS Entreprise AI Platform. He holds a PhD in pure mathematics from University of Paris VII, and he directed documentary movies before switching to Data Science and product management.

Du Phan is a Machine Learning engineer at Dataiku, where he works in democratizing data science. In the past few years, he has been dealing with a variety of data problems, from geospatial analysis to deep learning. His work now focuses on different facets and challenges of MLOps.

Joachim Zentici is an Engineering Director at Dataiku. Joachim graduated in applied mathematics from Ecole Centrale Paris. Prior to joining Dataiku in 2014, he was a Research Engineer in computer vision at Siemens Molecular Imaging and INRIA. He has also been a teacher and a lecturer. At Dataiku, Joachim had multiple contributions including managing the engineers in charge of the core infrastructure, building the team for the plugins & ecosystem effort as well as leading the global technology training program for customer-facing engineers.

Adrien Lavoillotte is Engineering Director at Dataiku where he leads the team responsible for machine learning and statistics features in the software. He studied at ECE Paris, a graduate school of engineering, and worked for several startups before joining Dataiku in 2015.

Makoto Miyazaki is a Data Scientist at Dataiku and responsible for delivering hands-on consulting services using Dataiku DSS for European and Japanese clients. Makoto holds a Bachelor’s degree in economics and a Master's Degree in data science, and he was also a former financial journalist with a wide range of beats, including nuclear energy and economic recoveries from the tsunami.

Lynn Heidmann received her Bachelor of Arts in Journalism/Mass Communications and Anthropology from the University of Wisconsin-Madison in 2008 and decided to bring her passion for research and writing into the world of tech. She spent seven years in the San Francisco Bay Area writing and running operations with Google and subsequently Niantic before moving to Paris to head content initiatives at Dataiku. In her current role, Lynn follows and writes about technological trends and developments in the world of data and AI.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagO'Reilly Media
  • Erscheinungsdatum2021
  • ISBN 10 1492083291
  • ISBN 13 9781492083290
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten183
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Befriedigend
Ship within 24hrs. Satisfaction...
Diesen Artikel anzeigen

EUR 7,01 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 4,60 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789385889769: Introducing MLOps: How to Scale Machine Learning in the Enterprise (Grayscale Indian Edition)

Vorgestellte Ausgabe

ISBN 10:  9385889761 ISBN 13:  9789385889769
Verlag: Shroff/O'Reilly, 2020
Softcover

Suchergebnisse für Introducing MLOps: How to Scale Machine Learning in...

Beispielbild für diese ISBN

Treveil, Mark; Omont, Nicolas; Stenac, Clément; Lefevre, Kenji; Phan, Du; Zentici, Joachim; Lavoillotte, Adrien; Miyazaki, Makoto; Heidmann, Lynn
ISBN 10: 1492083291 ISBN 13: 9781492083290
Gebraucht Paperback

Anbieter: BooksRun, Philadelphia, PA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Good. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 1492083291-11-1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 22,79
Währung umrechnen
Versand: EUR 7,01
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Adrien Lavoillotte
Verlag: O'Reilly Media, 2020
ISBN 10: 1492083291 ISBN 13: 9781492083290
Neu PAP

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9781492083290

Verkäufer kontaktieren

Neu kaufen

EUR 49,62
Währung umrechnen
Versand: EUR 4,60
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Treveil, Mark; Omont, Nicolas; Stenac, Clément; Lefevre, Kenji; Phan, Du; Zentici, Joachim; Lavoillotte, Adrien; Miyazaki, Makoto; Heidmann, Lynn
Verlag: O'Reilly Media, 2021
ISBN 10: 1492083291 ISBN 13: 9781492083290
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781492083290_new

Verkäufer kontaktieren

Neu kaufen

EUR 51,24
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 6 verfügbar

In den Warenkorb

Foto des Verkäufers

Treveil, Mark|Omont, Nicolas|Stenac, Clément|Lefevre, Kenji|Phan, Du|Zentici, Joachim|Lavoillotte, Adrien|Miyazaki, Makoto|Heidmann, Lynn
Verlag: O'Reilly Media, 2021
ISBN 10: 1492083291 ISBN 13: 9781492083290
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time.&Uumlber den Autorrnrn. Artikel-Nr. 396950626

Verkäufer kontaktieren

Neu kaufen

EUR 58,58
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Mark Treveil
Verlag: O'reilly Media Jan 2021, 2021
ISBN 10: 1492083291 ISBN 13: 9781492083290
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. Artikel-Nr. 9781492083290

Verkäufer kontaktieren

Neu kaufen

EUR 67,03
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Stenac, Clement/ Dreyfus-schmidt, Leo/ Lefevre, Kenji/ Omont, Nicolas/ Treveil, Mark
Verlag: Oreilly & Associates Inc, 2020
ISBN 10: 1492083291 ISBN 13: 9781492083290
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 150 pages. 9.50x7.25x0.50 inches. In Stock. Artikel-Nr. x-1492083291

Verkäufer kontaktieren

Neu kaufen

EUR 63,40
Währung umrechnen
Versand: EUR 11,87
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb