Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you'll learn techniques for extracting and transforming features--the numeric representations of raw data--into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.
Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.
You'll examine:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Alice is a technical leader in the field of Machine Learning. Her experience spans algorithm and platform development and applications. Currently, she is a Senior Manager in Amazon's Ad Platform. Previous roles include Director of Data Science at GraphLab/Dato/Turi, machine learning researcher at Microsoft Research, Redmond, and postdoctoral fellow at Carnegie Mellon University. She received a Ph.D. in Electrical Engineering and Computer science, and B.A. degrees in Computer Science in Mathematics, all from U.C. Berkeley.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 0,61 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: medimops, Berlin, Deutschland
Zustand: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Artikel-Nr. M01491953241-V
Anzahl: 2 verfügbar
Anbieter: medimops, Berlin, Deutschland
Zustand: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Artikel-Nr. M01491953241-G
Anzahl: 1 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. WO-9781491953242
Anzahl: 6 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. WO-9781491953242
Anzahl: 6 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781491953242
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781491953242_new
Anzahl: 8 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you ll learn techniques for extracting and transforming features-the numeric representations of raw data-into for. Artikel-Nr. 134085843
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - 'Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, youll learn techniques for extracting and transforming features-the numeric representations of raw data-into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.'--Page 4 of cover. Artikel-Nr. 9781491953242
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2018. Paperback. Feature engineering is essential to applied machine learning, but using domain knowledge to strengthen your predictive models can be difficult and expensive. To help fill the information gap this complete guide teaches beginning-to-intermediate data scientists how to work with this widely practiced but little discussed topic. Num Pages: 200 pages. BIC Classification: UY. Category: (P) Professional & Vocational. Dimension: 233 x 178 x 15. Weight in Grams: 666. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781491953242
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 370681595
Anzahl: 3 verfügbar