Proteins act as macromolecular machinery that mediate many diverse biological processes - the molecular mechanisms of this machinery has fascinated biologists for decades. Analysis of the kinetic and thermodynamic features of these mechanisms could reveal unprecedented aspects of how the machinery function and will eventually lead to a novel understanding of various biological processes. This dissertation comprehensively demonstrates how two universally conserved guanosine triphosphatases in the signal recognition particle and its membrane receptor maintain the efficiency and fidelity of the co-translational protein targeting process essential to all cells. A series of quantitative experiments reveal that the highly ordered and coordinated conformational states of the machinery are the key to their regulatory function. This dissertation also offers a mechanistic view of another fascinating system in which multistate protein machinery closely control critical biological processes.
Written while completing graduate work at California Institute of Technology.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Xin Zhang, PhD, received his Doctorate from The California Institute of Technology and now works at The Scripps Research Institute
Proteins act as macromolecular machinery that mediate many diverse biological processes - the molecular mechanisms of this machinery has fascinated biologists for decades. Analysis of the kinetic and thermodynamic features of these mechanisms could reveal unprecedented aspects of how the machinery function and will eventually lead to a novel understanding of various biological processes.
This dissertation comprehensively demonstrates how two universally conserved guanosine triphosphatases in the signal recognition particle and its membrane receptor maintain the efficiency and fidelity of the co-translational protein targeting process essential to all cells. A series of quantitative experiments reveal that the highly ordered and coordinated conformational states of the machinery are the key to their regulatory function. This dissertation also offers a mechanistic view of another fascinating system in which multistate protein machinery closely control critical biological processes.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 447929099
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Proteins act as macromolecular machinery that mediate many diverse biological processes - the molecular mechanisms of this machinery has fascinated biologists for decades. Analysis of the kinetic and thermodynamic features of these mechanisms could reveal unprecedented aspects of how the machinery function and will eventually lead to a novel understanding of various biological processes. This dissertation comprehensively demonstrates how two universally conserved guanosine triphosphatases in the signal recognition particle and its membrane receptor maintain the efficiency and fidelity of the co-translational protein targeting process essential to all cells. A series of quantitative experiments reveal that the highly ordered and coordinated conformational states of the machinery are the key to their regulatory function. This dissertation also offers a mechanistic view of another fascinating system in which multistate protein machinery closely control critical biological processes.Written while completing graduate work at California Institute of Technology.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 104 pp. Englisch. Artikel-Nr. 9781489978080
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Proteins act as macromolecular machinery that mediate many diverse biological processes - the molecular mechanisms of this machinery has fascinated biologists for decades. Analysis of the kinetic and thermodynamic features of these mechanisms could reveal unprecedented aspects of how the machinery function and will eventually lead to a novel understanding of various biological processes. This dissertation comprehensively demonstrates how two universally conserved guanosine triphosphatases in the signal recognition particle and its membrane receptor maintain the efficiency and fidelity of the co-translational protein targeting process essential to all cells. A series of quantitative experiments reveal that the highly ordered and coordinated conformational states of the machinery are the key to their regulatory function. This dissertation also offers a mechanistic view of another fascinating system in which multistate protein machinery closely control critical biological processes.Written while completing graduate work at California Institute of Technology. Artikel-Nr. 9781489978080
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781489978080_new
Anzahl: Mehr als 20 verfügbar