Verwandte Artikel zu Bayesian Optimization: Theory and Practice Using Python

Bayesian Optimization: Theory and Practice Using Python - Softcover

 
9781484290620: Bayesian Optimization: Theory and Practice Using Python

Inhaltsangabe

This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization.

The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a "develop from scratch" method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, you'll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide.

After completing this book, you will have a firm grasp of Bayesian optimization techniques, which you'll be able to put into practice in your own machine learning models.


What You Will Learn
  • Apply Bayesian Optimization to build better machine learning models
  • Understand and research existing and new Bayesian Optimization techniques
  • Leverage high-performance libraries such as BoTorch, which offer you the ability to dig into and edit the inner working
  • Dig into the inner workings of common optimization algorithms used to guide the search process in Bayesian optimization

Who This Book Is For
Beginner to intermediate level professionals in machine learning, analytics or other roles relevant in data science.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Peng Liu is an assistant professor of quantitative finance (practice) at Singapore Management University and an adjunct researcher at the National University of Singapore.  He holds a Ph.D. in statistics from the National University of Singapore and has ten years of working experience as a data scientist across the banking, technology, and hospitality industries

Von der hinteren Coverseite

This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization.

The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a “develop from scratch” method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, you’ll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide.

After completing this book, you will have a firm grasp of Bayesian optimization techniques, which you’ll be able to put into practice in your own machine learning models.


You will:
  • Apply Bayesian Optimization to build better machine learning models
  • Understand and research existing and new Bayesian Optimization techniques
  • Leverage high-performance libraries such as BoTorch, which offer you the ability to dig into and edit the inner working
  • Dig into the inner workings of common optimization algorithms used to guide the search process in Bayesian optimization

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagApress
  • Erscheinungsdatum2023
  • ISBN 10 1484290623
  • ISBN 13 9781484290620
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten252
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781484290644: Bayesian Optimization: Theory and Practice Using Python

Vorgestellte Ausgabe

ISBN 10:  148429064X ISBN 13:  9781484290644
Verlag: Apress, 2023
Softcover

Suchergebnisse für Bayesian Optimization: Theory and Practice Using Python

Foto des Verkäufers

Liu, Peng
Verlag: Springer, Berlin|Apress, 2023
ISBN 10: 1484290623 ISBN 13: 9781484290620
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learn. Artikel-Nr. 748633947

Verkäufer kontaktieren

Neu kaufen

EUR 53,28
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Liu, Peng
Verlag: Apress, 2023
ISBN 10: 1484290623 ISBN 13: 9781484290620
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781484290620_new

Verkäufer kontaktieren

Neu kaufen

EUR 62,26
Währung umrechnen
Versand: EUR 5,92
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Liu, Peng
Verlag: Apress, 2023
ISBN 10: 1484290623 ISBN 13: 9781484290620
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 249 pages. 10.00x7.01x0.53 inches. In Stock. Artikel-Nr. x-1484290623

Verkäufer kontaktieren

Neu kaufen

EUR 60,47
Währung umrechnen
Versand: EUR 11,89
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb