Verwandte Artikel zu Productive and Efficient Data Science with Python:...

Productive and Efficient Data Science with Python: With Modularizing, Memory profiles, and Parallel/GPU Processing - Softcover

 
9781484281208: Productive and Efficient Data Science with Python: With Modularizing, Memory profiles, and Parallel/GPU Processing

Inhaltsangabe

This book focuses on the Python-based tools and techniques to help you become highly productive at all aspects of typical data science stacks such as statistical analysis, visualization, model selection, and feature engineering.

You'll review the inefficiencies and bottlenecks lurking in the daily business process and solve them with practical solutions. Automation of repetitive data science tasks is a key mindset that is promoted throughout the book. You'll learn how to extend the existing coding practice to handle larger datasets with high efficiency with the help of advanced libraries and packages that already exist in the Python ecosystem. 

The book focuses on topics such as how to measure the memory footprint and execution speed of machine learning models, quality test a data science pipelines, and modularizing a data science pipeline for app development. You'll review Python libraries which come in very handy for automating and speeding up the day-to-day tasks.  

In the end, you'll understand and perform data science and machine learning tasks beyond the traditional methods and utilize the full spectrum of the Python data science ecosystem to increase productivity.  

What You'll Learn

  • Write fast and efficient code for data science and machine learning
  • Build robust and expressive data science pipelines
  • Measure memory and CPU profile for machine learning methods
  • Utilize the full potential of GPU for data science tasks
  • Handle large and complex data sets efficiently

Who This Book Is For 

Data scientists, data analysts, machine learning engineers, Artificial intelligence practitioners, statisticians who want to take full advantage of Python ecosystem.



Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Dr. Tirthajyoti Sarkar lives in the San Francisco Bay area works as a Data Science and Solutions Engineering Manager at Adapdix Corp., where he architects Artificial intelligence and Machine learning solutions for edge-computing based systems powering the Industry 4.0 and Smart manufacturing revolution across a wide range of industries. Before that, he spent more than a decade developing best-in-class semiconductor technologies for power electronics. 
He has published data science books, and regularly contributes highly cited AI/ML-related articles on top platforms such as KDNuggets and Towards Data Science. Tirthajyoti has developed multiple open-source software packages in the field of statistical modeling and data analytics. He has 5 US patents and more than thirty technical publications in international journals and conferences. 
He conducts regular workshops and participates in expert panels on various AI/ML topics and contributes tothe broader data science community in numerous ways. Tirthajyoti holds a Ph.D. from the University of Illinois and a B.Tech degree from the Indian Institute of Technology, Kharagpur.

Von der hinteren Coverseite

This book focuses on the Python-based tools and techniques to help you become highly productive at all aspects of typical data science stacks such as statistical analysis, visualization, model selection, and feature engineering.

You’ll review the inefficiencies and bottlenecks lurking in the daily business process and solve them with practical solutions. Automation of repetitive data science tasks is a key mindset that is promoted throughout the book. You’ll learn how to extend the existing coding practice to handle larger datasets with high efficiency with the help of advanced libraries and packages that already exist in the Python ecosystem. 

The book focuses on topics such as how to measure the memory footprint and execution speed of machine learning models, quality test a data science pipelines, and modularizing a data science pipeline for app development. You’ll review Python libraries which come in very handy for automating and speeding up the day-to-day tasks.  

In the end, you’ll understand and perform data science and machine learning tasks beyond the traditional methods and utilize the full spectrum of the Python data science ecosystem to increase productivity.  

You will:

  • Write fast and efficient code for data science and machine learning
  • Build robust and expressive data science pipelines
  • Measure memory and CPU profile for machine learning methods
  • Utilize the full potential of GPU for data science tasks
  • Handle large and complex data sets efficiently

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Productive and Efficient Data Science with Python:...

Foto des Verkäufers

Tirthajyoti Sarkar
Verlag: Apress, Apress Jul 2022, 2022
ISBN 10: 1484281209 ISBN 13: 9781484281208
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book focuses on the Python-based tools and techniques to help you become highly productive at all aspects of typical data science stacks such as statistical analysis, visualization, model selection, and feature engineering.Yoüll review the inefficiencies and bottlenecks lurking in the daily business process and solve them with practical solutions. Automation of repetitive data science tasks is a key mindset that is promoted throughout the book. Yoüll learn how to extend the existing coding practice to handle larger datasets with high efficiency with the help of advanced libraries and packages that already exist in the Python ecosystem.The book focuses on topics such as how to measure the memory footprint and execution speed of machine learning models, quality test a data science pipelines, and modularizing a data science pipeline for app development. Yoüll review Python libraries which come in very handy for automating and speeding up the day-to-day tasks.In the end, yoüll understand and perform data science and machine learning tasks beyond the traditional methods and utilize the full spectrum of the Python data science ecosystem to increase productivity.What Yoüll Learn Write fast and efficient code for data science and machine learningBuild robust and expressive data science pipelinesMeasure memory and CPU profile for machine learning methodsUtilize the full potential of GPU for data science tasksHandle large and complex data sets efficientlyWho This Book Is ForData scientists, data analysts, machine learning engineers, Artificial intelligence practitioners, statisticians who want to take full advantage of Python ecosystem.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 408 pp. Englisch. Artikel-Nr. 9781484281208

Verkäufer kontaktieren

Neu kaufen

EUR 64,19
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sarkar, Tirthajyoti
Verlag: Apress, 2022
ISBN 10: 1484281209 ISBN 13: 9781484281208
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781484281208_new

Verkäufer kontaktieren

Neu kaufen

EUR 64,66
Währung umrechnen
Versand: EUR 5,78
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sarkar, Tirthajyoti
Verlag: Apress, 2022
ISBN 10: 1484281209 ISBN 13: 9781484281208
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 404 pages. 10.00x7.00x0.84 inches. In Stock. Artikel-Nr. x-1484281209

Verkäufer kontaktieren

Neu kaufen

EUR 65,72
Währung umrechnen
Versand: EUR 11,60
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb