This book is an elementary introduction to knot theory. Unlike many other books on knot theory, this book has practically no prerequisites; it requires only basic plane and spatial Euclidean geometry but no knowledge of topology or group theory. It contains the first elementary proof of the existence of the Alexander polynomial of a knot or a link based on the Conway axioms, particularly the Conway skein relation. The book also contains an elementary exposition of the Jones polynomial, HOMFLY polynomial and Vassiliev knot invariants constructed using the Kontsevich integral. Additionally, there is a lecture introducing the braid group and shows its connection with knots and links.
Other important features of the book are the large number of original illustrations, numerous exercises and the absence of any references in the first eleven lectures. The last two lectures differ from the first eleven: they comprise a sketch of non-elementary topics and a brief history of the subject, including many references.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
A. B. Sossinsky, Independent University of Moscow, Russia, and Poncelete Laboratory IUM-CNRS, Moscow, Russia.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9781470471514
Anzahl: 15 verfügbar
Anbieter: ANTIQUARIAT Franke BRUDDENBOOKS, Lübeck, Deutschland
Broschur, 8°. Zustand: Sehr gut. 128 S. Das Buch ist in gutem, sauberen Zustand. Ecken und Kanten minimal bestossen. Sonst sauberes und wohlerhaltenes Exemplar. -----Inhalt:. This book is an elementary introduction to knot theory. Unlike many other books on knot theory, this book has practically no prerequisites; it requires only basic plane and spatial Euclidean geometry but no knowledge of topology or group theory. It contains the first elementary proof of the existence of the Alexander polynomial of a knot or a link based on the Conway axioms, particularly the Conway skein relation. The book also contains an elementary exposition of the Jones polynomial, HOMFLY polynomial and Vassiliev knot invariants constructed using the Kontsevich integral. Additionally, there is a lecture introducing the braid group and shows its connection with knots and links. Other important features of the book are the large number of original illustrations, numerous exercises and the absence of any references in the first eleven lectures. The last two lectures differ from the first eleven: they comprise a sketch of non-elementary topics and a brief history of the subject, including many references. ISBN: 9781470471514 Wir senden umgehend mit beiliegender MwSt.Rechnung. Sprache: Englisch Gewicht in Gramm: 299. Artikel-Nr. 669498
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 142 pages. 8.74x5.51x0.43 inches. In Stock. Artikel-Nr. __1470471515
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 399765277
Anzahl: 3 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 2148729718
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Provides an elementary introduction to knot theory. Unlike many other books on knot theory, this has practically no prerequisites; it requires only basic plane and spatial Euclidean geometry but no knowledge of topology or group theory. Artikel-Nr. 9781470471514
Anzahl: 2 verfügbar