For a finite group $G$ of Lie type and a prime $p$, the authors compare the automorphism groups of the fusion and linking systems of $G$ at $p$ with the automorphism group of $G$ itself. When $p$ is the defining characteristic of $G$, they are all isomorphic, with a very short list of exceptions. When $p$ is different from the defining characteristic, the situation is much more complex but can always be reduced to a case where the natural map from $\mathrm{Out}(G)$ to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of $BG^\wedge _p$ in terms of $\mathrm{Out}(G)$.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Carles Broto, Universitat Autonoma de Barcelona, Bellaterra, Spain.
Jesper M. Moller, Matematisk Institut, Kobenhavn, Denmark.
Bob Oliver, Universite Paris 13, Villetaneuse, France.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 16,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-00875 9781470437725 Sprache: Englisch Gewicht in Gramm: 150. Artikel-Nr. 2484714
Anzahl: 1 verfügbar