Covering Dimension of C*-Algebras and 2-Coloured Classification (Memoirs of the American Mathematical Society) - Softcover

Bosa, Joan; Brown, Nathanial P.; Sato, Yasuhiko; Tikuisis, Aaron; White, Stuart

 
9781470434700: Covering Dimension of C*-Algebras and 2-Coloured Classification (Memoirs of the American Mathematical Society)

Inhaltsangabe

The authors introduce the concept of finitely coloured equivalence for unital $^*$-homomorphisms between $\mathrm C^*$-algebras, for which unitary equivalence is the $1$-coloured case. They use this notion to classify $^*$-homomorphisms from separable, unital, nuclear $\mathrm C^*$-algebras into ultrapowers of simple, unital, nuclear, $\mathcal Z$-stable $\mathrm C^*$-algebras with compact extremal trace space up to $2$-coloured equivalence by their behaviour on traces; this is based on a $1$-coloured classification theorem for certain order zero maps, also in terms of tracial data.

As an application the authors calculate the nuclear dimension of non-AF, simple, separable, unital, nuclear, $\mathcal Z$-stable $\mathrm C^*$-algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, the authors derive a ``homotopy equivalence implies isomorphism'' result for large classes of $\mathrm C^*$-algebras with finite nuclear dimension.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Joan Bosa, University of Glasgow, Scotland, United Kingdom.

Nathanial P. Brown, The Pennsylvania State University, University Park, Pennsylvania.

Yasuhiko Sato, Kyoto University, Japan.

Aaron Tikuisis, University of Aberdeen, Scotland, United Kingdom.

Stuart White, University of Glasgow, Scotland, United Kingdom, and University of Munster, Germany.

Wilhelm Winter, University of Munster, Germany.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.