Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions (Memoirs of the American Mathematical Society) - Softcover

Helton, J. William; Klep, Igor; McCullough, Scott; Schweighofer, Markus

 
9781470434557: Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions (Memoirs of the American Mathematical Society)

Inhaltsangabe

An operator $C$ on a Hilbert space $\mathcal H$ dilates to an operator $T$ on a Hilbert space $\mathcal K$ if there is an isometry $V:\mathcal H\to \mathcal K$ such that $C= V^* TV$. A main result of this paper is, for a positive integer $d$, the simultaneous dilation, up to a sharp factor $\vartheta (d)$, expressed as a ratio of $\Gamma $ functions for $d$ even, of all $d\times d$ symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

J. William Helton, University of California, San Diego, California.

Igor Klep, The University of Auckland, New Zealand.

Scott McCullough, University of Florida, Gainesville, Florida.

Markus Schweighofer, Universitat Konstanz, Germany.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.