The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrodinger equation $$\sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u,$$ subject to Dirichlet boundary conditions $u(t,0)=u(t,\pi)=0$, where $M_{\xi}$ is a real Fourier multiplier. More precisely, they show that, for a typical Fourier multiplier $M_{\xi}$, any solution with the initial datum in the $\delta$-neighborhood of a KAM torus still stays in the $2\delta$-neighborhood of the KAM torus for a polynomial long time such as $|t|\leq \delta^{-\mathcal{M}}$ for any given $\mathcal M$ with $0\leq \mathcal{M}\leq C(\varepsilon)$, where $C(\varepsilon)$ is a constant depending on $\varepsilon$ and $C(\varepsilon)\rightarrow\infty$ as $\varepsilon\rightarrow0$.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Hongzi Cong, Dalian University of Technology, China.
Jianjun Liu, Sichuan University, Chengdu, Sichuan, China.
Xiaoping Yuan, Fudan University, Shanghai, China.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03394 9781470416577 Sprache: Englisch Gewicht in Gramm: 150. Artikel-Nr. 2489302
Anzahl: 1 verfügbar