Verwandte Artikel zu Topics in Modern Mathematics: Petrovskii Seminar (Contempora...

Topics in Modern Mathematics: Petrovskii Seminar (Contemporary Soviet mathematics) - Softcover

 
9781468416558: Topics in Modern Mathematics: Petrovskii Seminar (Contemporary Soviet mathematics)

Inhaltsangabe

1.1. Nearly Integrable Hamiltonian Systems. In this work we examine the system of Hamiltonian equations i = _ iJH , ~ = iJH iJcp iJl with the Hamiltonian function H = Ho(l) + eH. (I. cp). (1.1) where E: 1 is a small parameter, the perturbation E:Hl (I ,cp) is 2n­ periodic in CP=CP1,"'CPS' and I is an s-dimensional vector, I = Il, ••• I s The CPi are called angular variables, and the Ii action variables. A system with a Hamiltonian depending only on the action variables is said to be integrable, and a system with Hamiltonian (1.1) is said to be nearly integrable. The system (1.1) is also called a perturbation of the system with Hamiltonian Ho. The latter system is called un­ perturbed. 1.2. An Exponential Estimate of the Time of Stability for the Action Variables. Let I(t), cp(t) be an arbitrary solution of the per­ turbed system. We estimate the time interval during which the value I(t) differs slightly from the initial value: II(t)-I(O) I 1. The main result of the work is Theorem 4.4 (the main theorem) which is proved in [1]. This theorem asserts that the above-mentioned interval is estimated by a quantity which grows exponentially as the value of perturbation decreases linearly: 1/(t)-/(O)I 0 and b > 0 are given l.n Sec. 4 [IJ.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

1.1. Nearly Integrable Hamiltonian Systems. In this work we examine the system of Hamiltonian equations i = _ iJH , ~ = iJH iJcp iJl with the Hamiltonian function H = Ho(l) + eH. (I. cp). (1.1) where E: 1 is a small parameter, the perturbation E:Hl (I ,cp) is 2n­ periodic in CP=CP1,"'CPS' and I is an s-dimensional vector, I = Il, ··· I s The CPi are called angular variables, and the Ii action variables. A system with a Hamiltonian depending only on the action variables is said to be integrable, and a system with Hamiltonian (1.1) is said to be nearly integrable. The system (1.1) is also called a perturbation of the system with Hamiltonian Ho. The latter system is called un­ perturbed. 1.2. An Exponential Estimate of the Time of Stability for the Action Variables. Let I(t), cp(t) be an arbitrary solution of the per­ turbed system. We estimate the time interval during which the value I(t) differs slightly from the initial value: II(t)-I(O) I 1. The main result of the work is Theorem 4.4 (the main theorem) which is proved in [1]. This theorem asserts that the above-mentioned interval is estimated by a quantity which grows exponentially as the value of perturbation decreases linearly: 1/(t)-/(O)I 0 and b > 0 are given l.n Sec. 4 [IJ.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780306109805: Topics in Modern Mathematics: Petrovskii Seminar No. 5 (Contemporary Soviet Mathematics)

Vorgestellte Ausgabe

ISBN 10:  0306109808 ISBN 13:  9780306109805
Verlag: Consultants Bureau, 1985
Hardcover

Suchergebnisse für Topics in Modern Mathematics: Petrovskii Seminar (Contempora...

Foto des Verkäufers

O. Oleinik
Verlag: Springer US, 2012
ISBN 10: 1468416553 ISBN 13: 9781468416558
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 1.1. Nearly Integrable Hamiltonian Systems. In this work we examine the system of Hamiltonian equations i = _ iJH , ~ = iJH iJcp iJl with the Hamiltonian function H = Ho(l) + eH. (I. cp). (1.1) where E: '1 is a small parameter, the perturbation E:Hl (I ,cp) is 2n periodic in CP=CP1,''CPS' and I is an s-dimensional vector, I = Il, I s The CPi are called angular variables, and the Ii action variables. A system with a Hamiltonian depending only on the action variables is said to be integrable, and a system with Hamiltonian (1.1) is said to be nearly integrable. The system (1.1) is also called a perturbation of the system with Hamiltonian Ho. The latter system is called un perturbed. 1.2. An Exponential Estimate of the Time of Stability for the Action Variables. Let I(t), cp(t) be an arbitrary solution of the per turbed system. We estimate the time interval during which the value I(t) differs slightly from the initial value: II(t)-I(O) I '1. The main result of the work is Theorem 4.4 (the main theorem) which is proved in [1]. This theorem asserts that the above-mentioned interval is estimated by a quantity which grows exponentially as the value of perturbation decreases linearly: 1/(t)-/(O)I 0 and b 0 are given l.n Sec. 4 [IJ. Artikel-Nr. 9781468416558

Verkäufer kontaktieren

Neu kaufen

EUR 59,97
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2012
ISBN 10: 1468416553 ISBN 13: 9781468416558
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781468416558_new

Verkäufer kontaktieren

Neu kaufen

EUR 60,46
Währung umrechnen
Versand: EUR 5,75
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Oleinik, O. (Editor)
Verlag: Springer, 2012
ISBN 10: 1468416553 ISBN 13: 9781468416558
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 347 pages. 10.10x7.10x0.80 inches. In Stock. Artikel-Nr. x-1468416553

Verkäufer kontaktieren

Neu kaufen

EUR 80,25
Währung umrechnen
Versand: EUR 11,55
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb