Verwandte Artikel zu Machine Learning: An Algorithmic Perspective, Second...

Machine Learning: An Algorithmic Perspective, Second Edition (Chapman & Hall/CRC Machine Learning & Pattern Recognition) - Hardcover

 
9781466583283: Machine Learning: An Algorithmic Perspective, Second Edition (Chapman & Hall/CRC Machine Learning & Pattern Recognition)

Inhaltsangabe

A Proven, Hands-On Approach for Students without a Strong Statistical FoundationSince the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area. Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning., It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation. New to the Second EditionTwo new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of contentRevision of the support vector machine material, including a simple implementation for experimentsNew material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptronAdditional discussions of the Kalman and particle filtersImproved code, including better use of naming conventions in PythonSuitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems., All of the code used to create the examples is available on the author's website.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas

"I thought the first edition was hands down, one of the best texts covering applied machine learning from a Python perspective. I still consider this to be the case. The text, already extremely broad in scope, has been expanded to cover some very relevant modern topics ... I highly recommend this text to anyone who wants to learn machine learning ... I particularly recommend it to those students who have followed along from more of a statistical learning perspective (Ng, Hastie, Tibshirani) and are looking to broaden their knowledge of applications. The updated text is very timely, covering topics that are very popular right now and have little coverage in existing texts in this area."
Intelligent Trading Tech blog, April 2015

"The book's emphasis on algorithms distinguishes it from other books on machine learning (ML). This is further highlighted by the extensive use of Python code to implement the algorithms. ... The topics chosen do reflect the current research areas in ML, and the book can be recommended to those wishing to gain an understanding of the current state of the field."
―J. P. E. Hodgson, Computing Reviews, March 27, 2015

"I have been using this textbook for an undergraduate machine learning class for several years. Some of the best features of this book are the inclusion of Python code in the text (not just on a website), explanation of what the code does, and, in some cases, partial numerical run-throughs of the code. This helps students understand the algorithms better than high-level descriptions and equations alone and eliminates many sources of ambiguity and misunderstanding."
―Daniel Kifer

"This book will equip and engage students with its well-organised and -presented material. In each chapter, they will find thorough explanations, figures illustrating the discussed concepts and techniques, lots of programming (Python) and worked examples, practice questions, further readings, and a support website. The book will also be useful to professionals who can quickly inform and refresh their memory and knowledge of how machine learning works and what are the fundamental approaches and methods used in this area. As a whole, it provides an essential source for machine learning methodologies and techniques, how they work, and what are their application areas."
―Ivan Jordanov, University of Portsmouth, UK

Praise for the First Edition:
"... liberally illustrated with many programming examples, using Python. It includes a basic primer on Python and has an accompanying website. It has excellent breadth and is comprehensive in terms of the topics it covers, both in terms of methods and in terms of concepts and theory. ... I think the author has succeeded in his aim: the book provides an accessible introduction to machine learning. It would be excellent as a first exposure to the subject, and would put the various ideas in context ..."
―David J. Hand, International Statistical Review (2010), 78

"If you are interested in learning enough AI to understand the sort of new techniques being introduced into Web 2 applications, then this is a good place to start. ... it covers the subject matter of many an introductory course on AI and it has references to the source material and further reading but it is written in a fairly casual style. Overall it works and much of the mathematics is explained in ways that make it fairly clear what is going on ... . This is a suitable introduction to AI if you are studying the subject on your own and it would make a good course text for an introduction and overview of AI."
―I-Programmer, November 2009

Biografía del autor

Stephen Marsland is a professor of scientific computing and the postgraduate director of the School of Engineering and Advanced Technology (SEAT) at Massey University. His research interests in mathematical computing include shape spaces, Euler equations, machine learning, and algorithms. He received a PhD from Manchester University

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagChapman and Hall/CRC
  • Erscheinungsdatum2014
  • ISBN 10 1466583282
  • ISBN 13 9781466583283
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage2
  • Anzahl der Seiten458

Gebraucht kaufen

Zustand: Gut
Gut/Very good: Buch bzw. Schutzumschlag...
Diesen Artikel anzeigen

EUR 9,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

EUR 7,95 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781138583405: Machine Learning: An Algorithmic Perspective, Second Edition

Vorgestellte Ausgabe

ISBN 10:  1138583405 ISBN 13:  9781138583405
Verlag: Chapman and Hall/CRC, 2023
Hardcover

Suchergebnisse für Machine Learning: An Algorithmic Perspective, Second...

Beispielbild für diese ISBN

Marsland, Stephen
Verlag: Chapman and Hall/CRC, 2014
ISBN 10: 1466583282 ISBN 13: 9781466583283
Gebraucht Hardcover

Anbieter: medimops, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Artikel-Nr. M01466583282-V

Verkäufer kontaktieren

Gebraucht kaufen

EUR 54,80
Währung umrechnen
Versand: EUR 9,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Stephen Marsland
Verlag: Taylor and Francis Inc, 2014
ISBN 10: 1466583282 ISBN 13: 9781466583283
Neu Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FT-9781466583283

Verkäufer kontaktieren

Neu kaufen

EUR 93,08
Währung umrechnen
Versand: EUR 7,95
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 10 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Marsland, Stephen
Verlag: Chapman and Hall/CRC, 2014
ISBN 10: 1466583282 ISBN 13: 9781466583283
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781466583283_new

Verkäufer kontaktieren

Neu kaufen

EUR 104,37
Währung umrechnen
Versand: EUR 14,09
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Stephen Marsland
Verlag: CRC Press Okt 2014, 2014
ISBN 10: 1466583282 ISBN 13: 9781466583283
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - This bestseller helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation. Along with improved Python code, this second edition includes two new chapters on deep belief networks and Gaussian processes. It incorporates new material on the support vector machine, random forests, the perceptron convergence theorem, filters, and more. All of the code is available on the author's website. Artikel-Nr. 9781466583283

Verkäufer kontaktieren

Neu kaufen

EUR 111,79
Währung umrechnen
Versand: EUR 33,02
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Stephen Marsland
Verlag: CRC Press, 2014
ISBN 10: 1466583282 ISBN 13: 9781466583283
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Stephen Marsland is a professor of scientific computing and the postgraduate director of the School of Engineering and Advanced Technology (SEAT) at Massey University. His research interests in mathematical computing include shape spaces. Artikel-Nr. 595957291

Verkäufer kontaktieren

Neu kaufen

EUR 106,53
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb