A fresh and innovative technology is currently being recognized as a viable replacement for batteries. Research in the field of supercapacitors, as well as in the area of ceramic materials and their application to supercapacitor development, has spawned Nanostructured Ceramic Oxides for Supercapacitor Applications. Featuring key contributions from well-established experts, this book highlights the field of high-energy and power storage devices, and considers the potential of nanostructured ceramic oxides for supercapacitors.
It explores the role of different ceramic oxide systems and their surface nano-architecture in governing the efficacy of a supercapacitor, and presents a detailed understanding of the basic design and science associated with nanostructured ceramic oxide-based supercapacitors. It examines the history and development of this promising energy system, covering the fundamentals, science, and problems associated with this swiftly emerging field. The book also looks extensively into different measurement techniques that can evaluate the performance of this device.
Each chapter includes several simple, well-illustrated equations and schematic diagrams to augment the research topics and help the reader grasp the subject. Background theories and techniques are introduced early on, leading to the evolution of the field of nanostructured ceramic oxide-–based supercapacitors.
Nanostructured Ceramic Oxides for Supercapacitor Applications
chronicles significant strides in device development, and benefits seniors and graduate students studying physics, electrical and computer engineering, chemistry, mechanical engineering, materials science, and nanotechnology.Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Avinash Balakrishnan joined as faculty at Nanosolar Division in 2010, following a post doctorate at Grenoble Institute of Technology (Grenoble-INP) France. He received his PhD and MS in materials engineering from Paichai University, South Korea. He is an alumnus of National Institute of Technology, Karnataka, where he completed his bachelor’s in metallurgical engineering. He is actively leading five government-funded projects related to high-energy density supercapacitors. He is currently the associate editor to Journal of Nanoscience and Nanotechnology. He has coauthored more than 70 research publications, and has filed eight Indian Patents in the area of energy storage.
Dr. K. R. V. Subramanian is currently working as associate professor with Amrita Centre for Nanosciences, Kochi, India. He obtained his PhD from Cambridge University, England, in 2006. His previous alma mater for his bachelor’s and master’s degrees in engineering include the National Institute of Technology, Tiruchirapalli, and the Indian Institute of Science (IISc), Bangalore. He also worked as a postdoctoral research associate at the University of Illinois at Urbana–Champaign, USA. He continued his postdoctoral research at IISc, Bangalore. Dr. Subramanian has 62 journal publications and 29 conference presentations to his credit. He is also a reviewer for many prestigious journals. He researches actively in the areas of high performance supercapacitors, Li batteries, photovoltaics, nanofabrication, nanomaterials for cancer therapy, nanodevices.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 48,99 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dr. Avinash Balakrishnan joined as faculty at Nanosolar Division in 2010, following a post doctorate at Grenoble Institute of Technology (Grenoble-INP) France. He received his PhD and MS in materials engineering from Paichai University, . Artikel-Nr. 127448730
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - When developing a high performance supercapacitor, it is generally desirable to design the geometry and morphology of supercapacitor electrodes with fully utilized surface area and well-defined pore structures, which can lead to faster ion movement contacting the electroactive materials and promote faradic redox reactions. This book proposes preparation methodology of various one-dimensional metal oxide nanostructures used as electrode overlays and methods by which the conductivity of the stoichiometric metal oxide can be increased. Artikel-Nr. 9781466576902
Anzahl: 2 verfügbar