Verwandte Artikel zu Large Sample Techniques for Statistics (Springer Texts...

Large Sample Techniques for Statistics (Springer Texts in Statistics) - Softcover

 
9781461426233: Large Sample Techniques for Statistics (Springer Texts in Statistics)

Inhaltsangabe

This book offers a comprehensive guide to large sample techniques in statistics. More importantly, it focuses on thinking skills rather than just what formulae to use; it provides motivations, and intuition, rather than detailed proofs; it begins with very simple techniques, and connects theory and applications in entertaining ways. The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first 10 chapters contains at least one section of case study. The last five chapters are devoted to special areas of applications. The sections of case studies and chapters of applications fully demonstrate how to use methods developed from large sample theory in various, less-than-textbook situations. The book is supplemented by a large number of exercises, giving the readers plenty of opportunities to practice what they have learned. The book is mostly self-contained with the appendices providing some backgrounds for matrix algebra and mathematical statistics. The book is intended for a wide audience, ranging from senior undergraduate students to researchers with Ph.D. degrees. A first course in mathematical statistics and a course in calculus are prerequisites.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Jiming Jiang is a Professor of Statistics at the University of California, Davis. He is a Fellow of the American Statistical Association and a Fellow of the Institute of Mathematical Statistics. He is the author of another Springer book, Linear and Generalized Linear Mixed Models and Their Applications (2007). Jiming Jiang is a prominent researcher in the fields of mixed effects models, small area estimation and model selection. Most of his research papers have involved large sample techniques. He is currently an Associate Editor of the Annals of Statistics.

Von der hinteren Coverseite

This book offers a comprehensive guide to large sample techniques in statistics. More importantly, it focuses on thinking skills rather than just what formulae to use; it provides motivations, and intuition, rather than detailed proofs; it begins with very simple techniques, and connects theory and applications in entertaining ways. The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first 10 chapters contains at least one section of case study. The last five chapters are devoted to special areas of applications. The sections of case studies and chapters of applications fully demonstrate how to use methods developed from large sample theory in various, less-than-textbook situations.The book is supplemented by a large number of exercises, giving the readers plenty of opportunities to practice what they have learned. The book is mostly self-contained with the appendices providing some backgrounds for matrix algebra and mathematical statistics. The book is intended for a wide audience, ranging from senior undergraduate students to researchers with Ph.D. degrees. A first course in mathematical statistics and a course in calculus are prerequisites.Jiming Jiang is a Professor of Statistics at the University of California, Davis. He is a Fellow of the American Statistical Association and a Fellow of the Institute of Mathematical Statistics. He is the author of another Springer book, Linear and Generalized Linear Mixed Models and Their Applications (2007). Jiming Jiang is a prominent researcher in the fields of mixed effects models, small area estimation and model selection. Most of his research papers have involved large sample techniques. He is currently an Associate Editor of the Annals of Statistics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781441968265: Large Sample Techniques for Statistics (Springer Texts in Statistics)

Vorgestellte Ausgabe

ISBN 10:  1441968261 ISBN 13:  9781441968265
Verlag: Springer, 2010
Hardcover

Suchergebnisse für Large Sample Techniques for Statistics (Springer Texts...

Foto des Verkäufers

Jiming Jiang
ISBN 10: 1461426235 ISBN 13: 9781461426233
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -In a way, the world is made up of approximations, and surely there is no exception in the world of statistics. In fact, approximations, especially large sample approximations, are very important parts of both theoretical and - plied statistics.TheGaussiandistribution,alsoknownasthe normaldistri- tion,is merelyonesuchexample,dueto thewell-knowncentrallimittheorem. Large-sample techniques provide solutions to many practical problems; they simplify our solutions to di cult, sometimes intractable problems; they j- tify our solutions; and they guide us to directions of improvements. On the other hand, just because large-sample approximations are used everywhere, and every day, it does not guarantee that they are used properly, and, when the techniques are misused, there may be serious consequences. 2 Example 1 (Asymptotic distribution). Likelihood ratio test (LRT) is one of the fundamental techniques in statistics. It is well known that, in the 2 ¿standard¿ situation, the asymptotic null distribution of the LRT is ,with the degreesoffreedomequaltothe di erencebetweenthedimensions,de ned as the numbers of free parameters, of the two nested models being compared (e.g., Rice 1995, pp. 310). This might lead to a wrong impression that the 2 asymptotic (null) distribution of the LRT is always . A similar mistake 2 might take place when dealing with Pearson¿s -test¿the asymptotic distri- 2 2 bution of Pearson¿s -test is not always (e.g., Moore 1978).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 628 pp. Englisch. Artikel-Nr. 9781461426233

Verkäufer kontaktieren

Neu kaufen

EUR 90,94
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Jiming Jiang
ISBN 10: 1461426235 ISBN 13: 9781461426233
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In a way, the world is made up of approximations, and surely there is no exception in the world of statistics. In fact, approximations, especially large sample approximations, are very important parts of both theoretical and - plied statistics.TheGaussiandistribution,alsoknownasthe normaldistri- tion,is merelyonesuchexample,dueto thewell-knowncentrallimittheorem. Large-sample techniques provide solutions to many practical problems; they simplify our solutions to di cult, sometimes intractable problems; they j- tify our solutions; and they guide us to directions of improvements. On the other hand, just because large-sample approximations are used everywhere, and every day, it does not guarantee that they are used properly, and, when the techniques are misused, there may be serious consequences. 2 Example 1 (Asymptotic distribution). Likelihood ratio test (LRT) is one of the fundamental techniques in statistics. It is well known that, in the 2 'standard' situation, the asymptotic null distribution of the LRT is ,with the degreesoffreedomequaltothe di erencebetweenthedimensions,de ned as the numbers of free parameters, of the two nested models being compared (e.g., Rice 1995, pp. 310). This might lead to a wrong impression that the 2 asymptotic (null) distribution of the LRT is always . A similar mistake 2 might take place when dealing with Pearson's -test-the asymptotic distri- 2 2 bution of Pearson's -test is not always (e.g., Moore 1978). Artikel-Nr. 9781461426233

Verkäufer kontaktieren

Neu kaufen

EUR 95,65
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Jiang, Jiming
Verlag: Springer, 2012
ISBN 10: 1461426235 ISBN 13: 9781461426233
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781461426233_new

Verkäufer kontaktieren

Neu kaufen

EUR 97,99
Währung umrechnen
Versand: EUR 5,78
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Jiming Jiang
ISBN 10: 1461426235 ISBN 13: 9781461426233
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 628 pages. 9.00x6.00x1.25 inches. In Stock. Artikel-Nr. x-1461426235

Verkäufer kontaktieren

Neu kaufen

EUR 146,06
Währung umrechnen
Versand: EUR 11,60
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb