Throughout the development of mathematical programming researchers have paid great attention to problems that are described by a single objective that can only be achieved subject to satisfying a set of restrictions or constraints. Recently, it has been recognized that the use of a single objective limits the applicability of In reality, many multiobjective mathematical programming models. situations exist and frequently these mUltiple objectives are in direct conflict. Research on multiobjective problems can be broken down into two broad categories: multiobjective optimization and multicriterion decision theory. Multiobjective optimization models are based on techniques such as linear programming. In general, the multiobjective optimization problem can be defined as finding a feasible alternative that yields the most preferred set of values for the objective functions. This problem differs from a single objective because subjective methods are required to determine which alternative is most preferred. A body of literature parallel to that m multiobjective optimization has been developing in the area of multicriterion decision theory. These models are based on classical decision analysis, particularly utility theory. One focus of this research has been the development and testing of procedures for estimating multiattribute utility functions that are consistent with rational decision maker behavior. A utility function provides a model of a decision maker's choice among alternatives. This literature is directly xii MULTIOBJECTIVE OPTIMIZATION applicable to multiobjective optimization and provides much needed insight into the subjective character of that problem.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Throughout the development of mathematical programming researchers have paid great attention to problems that are described by a single objective that can only be achieved subject to satisfying a set of restrictions or constraints. Recently, it has been recognized that the use of a single objective limits the applicability of In reality, many multiobjective mathematical programming models. situations exist and frequently these mUltiple objectives are in direct conflict. Research on multiobjective problems can be broken down into two broad categories: multiobjective optimization and multicriterion decision theory. Multiobjective optimization models are based on techniques such as linear programming. In general, the multiobjective optimization problem can be defined as finding a feasible alternative that yields the most preferred set of values for the objective functions. This problem differs from a single objective because subjective methods are required to determine which alternative is most preferred. A body of literature parallel to that m multiobjective optimization has been developing in the area of multicriterion decision theory. These models are based on classical decision analysis, particularly utility theory. One focus of this research has been the development and testing of procedures for estimating multiattribute utility functions that are consistent with rational decision maker behavior. A utility function provides a model of a decision maker's choice among alternatives. This literature is directly xii MULTIOBJECTIVE OPTIMIZATION applicable to multiobjective optimization and provides much needed insight into the subjective character of that problem.
Traditional mathematical programming has concentrated on problems that can be solved by achieving a single objective. In reality, many multi-objective situations exist; concentrating on a single goal limits the applicability of math programming models. Accordingly, multiobjective optimization has emerged as a rapidly growing area. In this monograph the author draws from the more mature body of literature on multicriterion decision theory to enhance understanding of multiobjective optimization. There are obvious commonalities between the two areas, but to date no one has presented a book which unifies the two. That is the aim of Multiobjective Optimization: Behavioral and Computational Considerations. There are many behavioral and computational issues which are relevant to multiobjective optimization. These issues cross the disciplines of behavioral decision theory, information and decision support systems, and computational analysis.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Throughout the development of mathematical programming researchers have paid great attention to problems that are described by a single objective that can only be achieved subject to satisfying a set of restrictions or constraints. Recently, it has been recognized that the use of a single objective limits the applicability of In reality, many multiobjective mathematical programming models. situations exist and frequently these mUltiple objectives are in direct conflict. Research on multiobjective problems can be broken down into two broad categories: multiobjective optimization and multicriterion decision theory. Multiobjective optimization models are based on techniques such as linear programming. In general, the multiobjective optimization problem can be defined as finding a feasible alternative that yields the most preferred set of values for the objective functions. This problem differs from a single objective because subjective methods are required to determine which alternative is most preferred. A body of literature parallel to that m multiobjective optimization has been developing in the area of multicriterion decision theory. These models are based on classical decision analysis, particularly utility theory. One focus of this research has been the development and testing of procedures for estimating multiattribute utility functions that are consistent with rational decision maker behavior. A utility function provides a model of a decision maker's choice among alternatives. This literature is directly xii MULTIOBJECTIVE OPTIMIZATION applicable to multiobjective optimization and provides much needed insight into the subjective character of that problem.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. Artikel-Nr. 9781461366058
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Throughout the development of mathematical programming researchers have paid great attention to problems that are described by a single objective that can only be achieved subject to satisfying a set of restrictions or constraints. Recently, it has been recognized that the use of a single objective limits the applicability of In reality, many multiobjective mathematical programming models. situations exist and frequently these mUltiple objectives are in direct conflict. Research on multiobjective problems can be broken down into two broad categories: multiobjective optimization and multicriterion decision theory. Multiobjective optimization models are based on techniques such as linear programming. In general, the multiobjective optimization problem can be defined as finding a feasible alternative that yields the most preferred set of values for the objective functions. This problem differs from a single objective because subjective methods are required to determine which alternative is most preferred. A body of literature parallel to that m multiobjective optimization has been developing in the area of multicriterion decision theory. These models are based on classical decision analysis, particularly utility theory. One focus of this research has been the development and testing of procedures for estimating multiattribute utility functions that are consistent with rational decision maker behavior. A utility function provides a model of a decision maker's choice among alternatives. This literature is directly xii MULTIOBJECTIVE OPTIMIZATION applicable to multiobjective optimization and provides much needed insight into the subjective character of that problem. Artikel-Nr. 9781461366058
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781461366058_new
Anzahl: Mehr als 20 verfügbar