Verwandte Artikel zu Advances in Optimization and Approximation: 1 (Nonconvex...

Advances in Optimization and Approximation: 1 (Nonconvex Optimization and Its Applications) - Softcover

 
9781461336310: Advances in Optimization and Approximation: 1 (Nonconvex Optimization and Its Applications)

Inhaltsangabe

2. The Algorithm ...59 3. Convergence Analysis ..., ...60 4. Complexity Analysis ...63 5. Conclusions ...67 References ...67 A Simple Proof for a Result of Ollerenshaw on Steiner Trees ...68 Xiufeng Du, Ding-Zhu Du, Biao Gao, and Lixue Qii 1. Introduction ...68 2. In the Euclidean Plane ...69 3. In the Rectilinear Plane ...70 4. Discussion ...-...71 References ...71 Optimization Algorithms for the Satisfiability (SAT) Problem ...72 Jun Gu 1. Introduction ...72 2. A Classification of SAT Algorithms ...7:3 3. Preliminaries ...IV 4. Complete Algorithms and Incomplete Algorithms ...81 5. Optimization: An Iterative Refinement Process ...86 6. Local Search Algorithms for SAT ...89 7. Global Optimization Algorithms for SAT Problem ...106 8. Applications ...137 9. Future Work ...140 10. Conclusions ...141 References ...143 Ergodic Convergence in Proximal Point Algorithms with Bregman Functions ...155 Osman Guier 1. Introduction ...: ...155 2. Convergence for Function Minimization ...158 3. Convergence for Arbitrary Maximal Monotone Operators ...161 References ...163 Adding and Deleting Constraints in the Logarithmic Barrier Method for LP ...166 D. den Hertog, C. Roos, and T. Terlaky 1. Introduction ...16(5 2. The Logarithmic Darrier Method ...lG8 CONTENTS IX 3. The Effects of Shifting, Adding and Deleting Constraints ...171 4. The Build-Up and Down Algorithm ...177 ...5. Complexity Analysis ...180 References ...184 A Projection Method for Solving Infinite Systems of Linear Inequalities ...186 Hui Hu 1. Introduction ...186 2. The Projection Method ...186 3. Convergence Rate ...189 4. Infinite Systems of Convex Inequalities ...191 5. Application ...193 References ...

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

2. The Algorithm ...59 3. Convergence Analysis ..., ...60 4. Complexity Analysis ...63 5. Conclusions ...67 References ...67 A Simple Proof for a Result of Ollerenshaw on Steiner Trees ...68 Xiufeng Du, Ding-Zhu Du, Biao Gao, and Lixue Qii 1. Introduction ...68 2. In the Euclidean Plane ...69 3. In the Rectilinear Plane ...70 4. Discussion ...-...71 References ...71 Optimization Algorithms for the Satisfiability (SAT) Problem ...72 Jun Gu 1. Introduction ...72 2. A Classification of SAT Algorithms ...7:3 3. Preliminaries ...IV 4. Complete Algorithms and Incomplete Algorithms ...81 5. Optimization: An Iterative Refinement Process ...86 6. Local Search Algorithms for SAT ...89 7. Global Optimization Algorithms for SAT Problem ...106 8. Applications ...137 9. Future Work ...140 10. Conclusions ...141 References ...143 Ergodic Convergence in Proximal Point Algorithms with Bregman Functions ...155 Osman Guier 1. Introduction ...: ...155 2. Convergence for Function Minimization ...158 3. Convergence for Arbitrary Maximal Monotone Operators ...161 References ...163 Adding and Deleting Constraints in the Logarithmic Barrier Method for LP ...166 D. den Hertog, C. Roos, and T. Terlaky 1. Introduction ...16(5 2. The Logarithmic Darrier Method ...lG8 CONTENTS IX 3. The Effects of Shifting, Adding and Deleting Constraints ...171 4. The Build-Up and Down Algorithm ...177 ...5. Complexity Analysis ...180 References ...184 A Projection Method for Solving Infinite Systems of Linear Inequalities ...186 Hui Hu 1. Introduction ...186 2. The Projection Method ...186 3. Convergence Rate ...189 4. Infinite Systems of Convex Inequalities ...191 5. Application ...193 References ...

Reseña del editor

2. The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3. Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . 60 4. Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A Simple Proof for a Result of Ollerenshaw on Steiner Trees . . . . . . . . . . 68 Xiufeng Du, Ding-Zhu Du, Biao Gao, and Lixue Qii 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2. In the Euclidean Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3. In the Rectilinear Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4. Discussion . . . . . . . . . . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Optimization Algorithms for the Satisfiability (SAT) Problem . . . . . . . . . 72 Jun Gu 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2. A Classification of SAT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:3 3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 4. Complete Algorithms and Incomplete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5. Optimization: An Iterative Refinement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6. Local Search Algorithms for SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7. Global Optimization Algorithms for SAT Problem . . . . . . . . . . . . . . . . . . . . . . . . 106 8. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Ergodic Convergence in Proximal Point Algorithms with Bregman Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Osman Guier 1. Introduction . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2. Convergence for Function Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3. Convergence for Arbitrary Maximal Monotone Operators . . . . . . . . . . . . . . . . . 161 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Adding and Deleting Constraints in the Logarithmic Barrier Method for LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 D. den Hertog, C. Roos, and T. Terlaky 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16(5 2. The Logarithmic Darrier Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lG8 CONTENTS IX 3. The Effects of Shifting, Adding and Deleting Constraints . . . . . . . . . . . . . . . . . . 171 4. The Build-Up and Down Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 . . . . . . 5. Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 A Projection Method for Solving Infinite Systems of Linear Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Hui Hu 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 2. The Projection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 3. Convergence Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 4. Infinite Systems of Convex Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5. Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2011
  • ISBN 10 1461336317
  • ISBN 13 9781461336310
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten408
  • HerausgeberDing-Zhu Du, Jie Sun
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780792327851: Advances in Optimization and Approximation: 1 (Nonconvex Optimization and Its Applications)

Vorgestellte Ausgabe

ISBN 10:  0792327853 ISBN 13:  9780792327851
Verlag: Springer, 1994
Hardcover

Suchergebnisse für Advances in Optimization and Approximation: 1 (Nonconvex...

Foto des Verkäufers

Jie Sun
ISBN 10: 1461336317 ISBN 13: 9781461336310
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 2. The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3. Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . 60 4. Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A Simple Proof for a Result of Ollerenshaw on Steiner Trees . . . . . . . . . . 68 Xiufeng Du, Ding-Zhu Du, Biao Gao, and Lixue Qii 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2. In the Euclidean Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3. In the Rectilinear Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4. Discussion . . . . . . . . . . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Optimization Algorithms for the Satisfiability (SAT) Problem . . . . . . . . . 72 Jun Gu 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2. A Classification of SAT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:3 3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 4. Complete Algorithms and Incomplete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5. Optimization: An Iterative Refinement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6. Local Search Algorithms for SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7. Global Optimization Algorithms for SAT Problem . . . . . . . . . . . . . . . . . . . . . . . . 106 8. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Ergodic Convergence in Proximal Point Algorithms with Bregman Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Osman Guier 1. Introduction . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2. Convergence for Function Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3. Convergence for Arbitrary Maximal Monotone Operators . . . . . . . . . . . . . . . . . 161 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Adding and Deleting Constraints in the Logarithmic Barrier Method for LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 D. den Hertog, C. Roos, and T. Terlaky 1. Introduction . . . . . . . Artikel-Nr. 9781461336310

Verkäufer kontaktieren

Neu kaufen

EUR 164,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2011
ISBN 10: 1461336317 ISBN 13: 9781461336310
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781461336310_new

Verkäufer kontaktieren

Neu kaufen

EUR 170,18
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Panos Pardalos
Verlag: Springer US, 2011
ISBN 10: 1461336317 ISBN 13: 9781461336310
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 390 pages. 9.45x6.30x0.92 inches. In Stock. Artikel-Nr. x-1461336317

Verkäufer kontaktieren

Neu kaufen

EUR 237,89
Währung umrechnen
Versand: EUR 11,87
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb