Thisvolume isdevotedtomethodsfor thestudyoftheeffectsofrelativity on theelectronicstructure ofatomsand molecules. The accurate descrip tionofrelativisticeffectsinheavyatomshaslongbeenrecognizedasoneof the central problems ofatomic physics. Contemporary relativistic atomic structure calculations can be performed almost routinely. Recent years have seen agrowinginterestin thestudyoftheeffects ofrelativityon the structureofmolecules. Even for molecularsystemscontainingatoms from thesecondrowoftheperiodictable theenergyassociatedwith relativistic effects is often larger than that arising from electron correlation. For moleculescontainingheavieratoms relativistic effects become increasingly important,andforsystemscontainingveryheavyatomsrelativityisknown todominatemanychemicalproperties. In this volum~, one of the pioneers of relativistic atomic structure calculations,Ian P. Grant,providesadetailedsurveyofthecomputational techniquesemployedincontemporarystudiesoftheeffectsofrelativityon atomicstructure. Thisisanareaofresearchinwhichcalculationscanoften lead to a particularly impressive degreeofagreement between theoryand experiment. Furthermore, theseatomicstudies haveprovided manyofthe foundations of a fully relativistic quantum chemistry. However, the spherical symmetry ofatoms allows significantsimplificationsto bemade in their quantum mechanical treatment, simplifications which are not possibleinstudiesofmolecules. Inparticular, as is wellknown from non relativistictheoriesofmolecularelectronicstructure,itisalmostobligatory to invoke the algebraic approximation in molecular work and use finite basis set expansions. The problem of describing relativistic effects in molecules is addressed in Chapter2 by Stephen Wilson. This chapter is devotedtoab initiorelativisticmolecularstructurecalculationsinwhichall electrons are explicitly considered. The problem of induding relativistic effects in molecular studies is also addressed in Chapters3 and 4. In Chapter 3, Odd Gropen describes the use of relativistic effective core ix x Preface potentials in calculations on molecular systems involving heavy atoms. This approach can lead to more tractable algorithms than the methods described in Chapter2 and thus significantly extends the range of applications. The use of semiempirical methods has yielded a wealth of informationabouttheinfluenceofrelativityonthechemistryoftheheavier elements. Thisimportantarea is reviewed inChapter4 by Pekka Pyykk6. Finally, inChapter5, Harry M.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Thisvolume isdevotedtomethodsfor thestudyoftheeffectsofrelativity on theelectronicstructure ofatomsand molecules. The accurate descrip tionofrelativisticeffectsinheavyatomshaslongbeenrecognizedasoneof the central problems ofatomic physics. Contemporary relativistic atomic structure calculations can be performed almost routinely. Recent years have seen agrowinginterestin thestudyoftheeffects ofrelativityon the structureofmolecules. Even for molecularsystemscontainingatoms from thesecondrowoftheperiodictable theenergyassociatedwith relativistic effects is often larger than that arising from electron correlation. For moleculescontainingheavieratoms relativistic effects become increasingly important,andforsystemscontainingveryheavyatomsrelativityisknown todominatemanychemicalproperties. In this volum~, one of the pioneers of relativistic atomic structure calculations,Ian P. Grant,providesadetailedsurveyofthecomputational techniquesemployedincontemporarystudiesoftheeffectsofrelativityon atomicstructure. Thisisanareaofresearchinwhichcalculationscanoften lead to a particularly impressive degreeofagreement between theoryand experiment. Furthermore, theseatomicstudies haveprovided manyofthe foundations of a fully relativistic quantum chemistry. However, the spherical symmetry ofatoms allows significantsimplificationsto bemade in their quantum mechanical treatment, simplifications which are not possibleinstudiesofmolecules. Inparticular, as is wellknown from non relativistictheoriesofmolecularelectronicstructure,itisalmostobligatory to invoke the algebraic approximation in molecular work and use finite basis set expansions. The problem of describing relativistic effects in molecules is addressed in Chapter2 by Stephen Wilson. This chapter is devotedtoab initiorelativisticmolecularstructurecalculationsinwhichall electrons are explicitly considered. The problem of induding relativistic effects in molecular studies is also addressed in Chapters3 and 4. In Chapter 3, Odd Gropen describes the use of relativistic effective core ix x Preface potentials in calculations on molecular systems involving heavy atoms. This approach can lead to more tractable algorithms than the methods described in Chapter2 and thus significantly extends the range of applications. The use of semiempirical methods has yielded a wealth of informationabouttheinfluenceofrelativityonthechemistryoftheheavier elements. Thisimportantarea is reviewed inChapter4 by Pekka Pyykk6. Finally, inChapter5, Harry M.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Thisvolume isdevotedtomethodsfor thestudyoftheeffectsofrelativity on theelectronicstructure ofatomsand molecules. The accurate descrip tionofrelativisticeffectsinheavyatomshaslongbeenrecognizedasoneof the central problems ofatomic physics. Contemporary relativistic atomic structure calculations can be performed almost routinely. Recent years have seen agrowinginterestin thestudyoftheeffects ofrelativityon the structureofmolecules. Even for molecularsystemscontainingatoms from thesecondrowoftheperiodictable theenergyassociatedwith relativistic effects is often larger than that arising from electron correlation. For moleculescontainingheavieratoms relativistic effects become increasingly important,andforsystemscontainingveryheavyatomsrelativityisknown todominatemanychemicalproperties. In this volum~, one of the pioneers of relativistic atomic structure calculations,Ian P. Grant,providesadetailedsurveyofthecomputational techniquesemployedincontemporarystudiesoftheeffectsofrelativityon atomicstructure. Thisisanareaofresearchinwhichcalculationscanoften lead to a particularly impressive degreeofagreement between theoryand experiment. Furthermore, theseatomicstudies haveprovided manyofthe foundations of a fully relativistic quantum chemistry. However, the spherical symmetry ofatoms allows significantsimplificationsto bemade in their quantum mechanical treatment, simplifications which are not possibleinstudiesofmolecules. Inparticular, as is wellknown from non relativistictheoriesofmolecularelectronicstructure,itisalmostobligatory to invoke the algebraic approximation in molecular work and use finite basis set expansions. The problem of describing relativistic effects in molecules is addressed in Chapter2 by Stephen Wilson. This chapter is devotedtoab initiorelativisticmolecularstructurecalculationsinwhichall electrons are explicitly considered. The problem of induding relativistic effects in molecular studies is also addressed in Chapters3 and 4. In Chapter 3, Odd Gropen describes the use of relativistic effective core ix x Preface potentials in calculations on molecular systems involving heavy atoms. This approach can lead to more tractable algorithms than the methods described in Chapter2 and thus significantly extends the range of applications. The use of semiempirical methods has yielded a wealth of informationabouttheinfluenceofrelativityonthechemistryoftheheavier elements. Thisimportantarea is reviewed inChapter4 by Pekka Pyykk6. Finally, inChapter5, Harry M. Artikel-Nr. 9781461280446
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781461280446_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 320 pages. 9.02x5.98x0.71 inches. In Stock. Artikel-Nr. x-1461280443
Anzahl: 2 verfügbar