Verwandte Artikel zu A Stability Technique for Evolution Partial Differential...

A Stability Technique for Evolution Partial Differential Equations: A Dynamical Systems Approach: 56 (Progress in Nonlinear Differential Equations and Their Applications) - Softcover

 
9781461273967: A Stability Technique for Evolution Partial Differential Equations: A Dynamical Systems Approach: 56 (Progress in Nonlinear Differential Equations and Their Applications)

Inhaltsangabe

This book introduces a new, state-of-the-art method for the study of asymptotic behavior of solutions for evolution equations. The underlying theory hinges on a new stability result, which is presented in detail; also included is a review of basic techniques---many original to the authors---for the solution of nonlinear diffusion equations.  Subsequent chapters feature a self-contained analysis of specific equations whose solutions depend on the stability theorem; a variety of estimation techniques for solutions of semi- and quasilinear parabolic equations are provided as well.

With its carefully-constructed theorems, proofs, and references, the text is appropriate for students and researchers in physics and mathematics who have basic knowledge of PDEs and some prior acquaintance with evolution equations. Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear partial differential equations.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas

"The authors are famous experts in the field of PDEs and blow-up techniques. In this book they present a stability theorem, the so-called S-theorem, and show, with several examples, how it may be applied to a wide range of stability problems for evolution equations. The book [is] aimed primarily aimed at advanced graduate students."

―Mathematical Reviews

"The book is very interesting and useful for researchers and students in mathematical physics...with basic knowledge in partial differential equations and functional analysis. A comprehensive index and bibliography are given" ---Revue Roumaine de Mathématiques Pures et Appliquées

Reseña del editor

* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations.

* Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs.

* Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,85 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für A Stability Technique for Evolution Partial Differential...

Beispielbild für diese ISBN

Galaktionov, Victor A.; Vázquez, Juan Luis
Verlag: Birkhäuser, 2012
ISBN 10: 146127396X ISBN 13: 9781461273967
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781461273967_new

Verkäufer kontaktieren

Neu kaufen

EUR 60,49
Währung umrechnen
Versand: EUR 13,85
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Juan Luis Vázquez
ISBN 10: 146127396X ISBN 13: 9781461273967
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - common feature is that these evolution problems can be formulated as asymptoti cally small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolu tion PDEs, in its abstract formulation it deals with a nonautonomous abstract differ ential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ~ ° as t ~ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2\* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object. Artikel-Nr. 9781461273967

Verkäufer kontaktieren

Neu kaufen

EUR 59,97
Währung umrechnen
Versand: EUR 63,02
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb