Verwandte Artikel zu Stochastic Controls: Hamiltonian Systems and HJB Equations:...

Stochastic Controls: Hamiltonian Systems and HJB Equations: 43 (Stochastic Modelling and Applied Probability) - Softcover

 
9781461271543: Stochastic Controls: Hamiltonian Systems and HJB Equations: 43 (Stochastic Modelling and Applied Probability)

Inhaltsangabe

This monograph unifies the two key approaches in solving optimal control problems. The book will be of interest to researchers and graduate students in applied probability, control engineering, and econometrics.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas

From the reviews:

SIAM REVIEW

"The presentation of this book is systematic and self-contained...Summing up, this book is a very good addition to the control literature, with original features not found in other reference books. Certain parts could be used as basic material for a graduate (or postgraduate) course...This book is highly recommended to anyone who wishes to study the relationship between Pontryagin’s maximum principle and Bellman’s dynamic programming principle applied to diffusion processes."

MATHEMATICS REVIEW

This is an authoratative book which should be of interest to researchers in stochastic control, mathematical finance, probability theory, and applied mathematics. Material out of this book could also be used in graduate courses on stochastic control and dynamic optimization in mathematics, engineering, and finance curricula. Tamer Basar, Math. Review

Reseña del editor

As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol­ lowing: (Q) What is the relationship betwccn the maximum principlc and dy­ namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa­ tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or­ der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2012
  • ISBN 10 1461271541
  • ISBN 13 9781461271543
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten464
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780387987231: Stochastic Controls: Hamiltonian Systems and HJB Equations: 43 (Stochastic Modelling and Applied Probability)

Vorgestellte Ausgabe

ISBN 10:  0387987231 ISBN 13:  9780387987231
Verlag: Springer, 1999
Hardcover

Suchergebnisse für Stochastic Controls: Hamiltonian Systems and HJB Equations:...

Foto des Verkäufers

Xun Yu Zhou
ISBN 10: 1461271541 ISBN 13: 9781461271543
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. \* An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation. Artikel-Nr. 9781461271543

Verkäufer kontaktieren

Neu kaufen

EUR 196,27
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Yong, Jiongmin; Zhou, Xun Yu
Verlag: Springer, 2012
ISBN 10: 1461271541 ISBN 13: 9781461271543
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In English. Artikel-Nr. ria9781461271543_new

Verkäufer kontaktieren

Neu kaufen

EUR 195,71
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb