Verwandte Artikel zu Discrete-Time Markov Control Processes: Basic Optimality...

Discrete-Time Markov Control Processes: Basic Optimality Criteria: 30 (Stochastic Modelling and Applied Probability) - Softcover

 
9781461268840: Discrete-Time Markov Control Processes: Basic Optimality Criteria: 30 (Stochastic Modelling and Applied Probability)

Reseña del editor

This book presents the first part of a planned two-volume series devoted to a systematic exposition of some recent developments in the theory of discrete-time Markov control processes (MCPs). Interest is mainly confined to MCPs with Borel state and control (or action) spaces, and possibly unbounded costs and noncompact control constraint sets. MCPs are a class of stochastic control problems, also known as Markov decision processes, controlled Markov processes, or stochastic dynamic pro­ grams; sometimes, particularly when the state space is a countable set, they are also called Markov decision (or controlled Markov) chains. Regardless of the name used, MCPs appear in many fields, for example, engineering, economics, operations research, statistics, renewable and nonrenewable re­ source management, (control of) epidemics, etc. However, most of the lit­ erature (say, at least 90%) is concentrated on MCPs for which (a) the state space is a countable set, and/or (b) the costs-per-stage are bounded, and/or (c) the control constraint sets are compact. But curiously enough, the most widely used control model in engineering and economics--namely the LQ (Linear system/Quadratic cost) model-satisfies none of these conditions. Moreover, when dealing with "partially observable" systems) a standard approach is to transform them into equivalent "completely observable" sys­ tems in a larger state space (in fact, a space of probability measures), which is uncountable even if the original state process is finite-valued.

Reseña del editor

This book provides a unified, comprehensive treatment of some recent theoretical developments on Markov control processes. Interest is mainly confined to MCPs with Borel state and control spaces, and possibly unbounded costs and non-compact control constraint sets. The control model studied is sufficiently general to include virtually all the usual discrete-time stochastic control models that appear in applications to engineering, economics, mathematical population processes, operations research, and management science. Much of the material appears for the first time in book form.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2012
  • ISBN 10 1461268842
  • ISBN 13 9781461268840
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten236

EUR 14,25 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780387945798: Discrete-Time Markov Control Processes: Basic Optimality Criteria: 30 (Stochastic Modelling and Applied Probability)

Vorgestellte Ausgabe

ISBN 10:  0387945792 ISBN 13:  9780387945798
Verlag: Springer, 1995
Hardcover

Suchergebnisse für Discrete-Time Markov Control Processes: Basic Optimality...

Beispielbild für diese ISBN

Hernandez-Lerma, Onesimo; Lasserre, Jean B.
Verlag: Springer, 2012
ISBN 10: 1461268842 ISBN 13: 9781461268840
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781461268840_new

Verkäufer kontaktieren

Neu kaufen

EUR 119,59
Währung umrechnen
Versand: EUR 14,25
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Jean B. Lasserre
ISBN 10: 1461268842 ISBN 13: 9781461268840
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the first part of a planned two-volume series devoted to a systematic exposition of some recent developments in the theory of discrete-time Markov control processes (MCPs). Interest is mainly confined to MCPs with Borel state and control (or action) spaces, and possibly unbounded costs and noncompact control constraint sets. MCPs are a class of stochastic control problems, also known as Markov decision processes, controlled Markov processes, or stochastic dynamic pro grams; sometimes, particularly when the state space is a countable set, they are also called Markov decision (or controlled Markov) chains. Regardless of the name used, MCPs appear in many fields, for example, engineering, economics, operations research, statistics, renewable and nonrenewable re source management, (control of) epidemics, etc. However, most of the lit erature (say, at least 90%) is concentrated on MCPs for which (a) the state space is a countable set, and/or (b) the costs-per-stage are bounded, and/or (c) the control constraint sets are compact. But curiously enough, the most widely used control model in engineering and economics--namely the LQ (Linear system/Quadratic cost) model-satisfies none of these conditions. Moreover, when dealing with 'partially observable' systems) a standard approach is to transform them into equivalent 'completely observable' sys tems in a larger state space (in fact, a space of probability measures), which is uncountable even if the original state process is finite-valued. Artikel-Nr. 9781461268840

Verkäufer kontaktieren

Neu kaufen

EUR 152,98
Währung umrechnen
Versand: EUR 29,82
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb