An operator theoretic approach to robust control analysis for linear time-varying systems, with the emphasis on the conceptual similarity with the H control theory for time-invariant systems. It clarifies the major difficulties confronted in the time varying case and all the necessary operator theory is developed from first principles, making the book as self-contained as possible. After presenting the necessary results from the theories of Toeplitz operators and nest algebras, linear systems are defined as input-output operators and the relationship between stabilisation and the existence of co-prime factorisations is described. Uniform optimal control problems are formulated as model-matching problems and are reduced to four block problems, while robustness is considered both from the point of view of fractional representations and the "time varying gap" metric, as is the relationship between these types of uncertainties. The book closes with the solution of the orthogonal embedding problem for time-varying contractive systems. As such, this book is useful to both mathematicians and to control engineers.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
An operator theoretic approach to robust control analysis for linear time-varying systems, with the emphasis on the conceptual similarity with the H control theory for time-invariant systems. It clarifies the major difficulties confronted in the time varying case and all the necessary operator theory is developed from first principles, making the book as self-contained as possible. After presenting the necessary results from the theories of Toeplitz operators and nest algebras, linear systems are defined as input-output operators and the relationship between stabilisation and the existence of co-prime factorisations is described. Uniform optimal control problems are formulated as model-matching problems and are reduced to four block problems, while robustness is considered both from the point of view of fractional representations and the "time varying gap" metric, as is the relationship between these types of uncertainties. The book closes with the solution of the orthogonal embedding problem for time-varying contractive systems. As such, this book is useful to both mathematicians and to control engineers.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Motivation The latest texts on linear systems for engineering students have begun incorpo rating chapters on robust control using the state space approach to HOC control for linear finite dimensional time-invariant systems. While the pedagogical and computational advantages of this approach are not to be underestimated, there are, in my opinion, some disadvantages. Among these disadvantages is the narrow viewpoint that arises from the amputation of the finite dimensional time-invariant case from the much more general theory that had been developed using frequency domain methods. The frequency domain, which occupied center stage for most of the develop ments of HOC control theory, presents a natural context for analysis and controller synthesis for time-invariant linear systems, whether of finite or infinite dimen sions. A fundamental role was played in this theory by operator theoretic methods, especially the theory of Toeplitz and skew-Toeplitz operators. The recent lecture notes of Foias, Ozbay, and Tannenbaum [3] display the power of this theory by constructing robust controllers for the problem of a flexible beam. Although controller synthesis depends heavily on the special computational ad vantages of time-invariant systems and the relationship between HOC optimization and classical interpolation methods, it turns out that the analysis is possible without the assumption that the systems are time-invariant. Artikel-Nr. 9781461268291
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781461268291_new
Anzahl: Mehr als 20 verfügbar