1.1. What This Book is About This book is a study of • subrecursive programming systems, • efficiency/program-size trade-offs between such systems, and • how these systems can serve as tools in complexity theory. Section 1.1 states our basic themes, and Sections 1.2 and 1.3 give a general outline of the book. Our first task is to explain what subrecursive programming systems are and why they are of interest. 1.1.1. Subrecursive Programming Systems A subrecursive programming system is, roughly, a programming language for which the result of running any given program on any given input can be completely determined algorithmically. Typical examples are: 1. the Meyer-Ritchie LOOP language [MR67,DW83], a restricted assem bly language with bounded loops as the only allowed deviation from straight-line programming; 2. multi-tape ’lUring Machines each explicitly clocked to halt within a time bound given by some polynomial in the length ofthe input (see [BH79,HB79]); 3. the set of seemingly unrestricted programs for which one can prove 1 termination on all inputs (see [Kre51,Kre58,Ros84]); and 4. finite state and pushdown automata from formal language theory (see [HU79]). lOr, more precisely, the collection of programs, p, ofsome particular general-purpose programming language (e.g., Lisp or Modula-2) for which there is a proof in some par ticular formal system (e.g., Peano Arithmetic) that p halts on all inputs.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
1.1. What This Book is About This book is a study of · subrecursive programming systems, · efficiency/program-size trade-offs between such systems, and · how these systems can serve as tools in complexity theory. Section 1.1 states our basic themes, and Sections 1.2 and 1.3 give a general outline of the book. Our first task is to explain what subrecursive programming systems are and why they are of interest. 1.1.1. Subrecursive Programming Systems A subrecursive programming system is, roughly, a programming language for which the result of running any given program on any given input can be completely determined algorithmically. Typical examples are: 1. the Meyer-Ritchie LOOP language [MR67,DW83], a restricted assem bly language with bounded loops as the only allowed deviation from straight-line programming; 2. multi-tape 'lUring Machines each explicitly clocked to halt within a time bound given by some polynomial in the length ofthe input (see [BH79,HB79]); 3. the set of seemingly unrestricted programs for which one can prove 1 termination on all inputs (see [Kre51,Kre58,Ros84]); and 4. finite state and pushdown automata from formal language theory (see [HU79]). lOr, more precisely, the collection of programs, p, ofsome particular general-purpose programming language (e.g., Lisp or Modula-2) for which there is a proof in some par ticular formal system (e.g., Peano Arithmetic) that p halts on all inputs.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Subrecursive Programming Systems | Complexity & Succinctness | James S. Royer (u. a.) | Taschenbuch | viii | Englisch | 2012 | Birkhäuser | EAN 9781461266808 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 106118836
Anzahl: 5 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 1.1. What This Book is About This book is a study of subrecursive programming systems, efficiency/program-size trade-offs between such systems, and how these systems can serve as tools in complexity theory. Section 1.1 states our basic themes, and Sections 1.2 and 1.3 give a general outline of the book. Our first task is to explain what subrecursive programming systems are and why they are of interest. 1.1.1. Subrecursive Programming Systems A subrecursive programming system is, roughly, a programming language for which the result of running any given program on any given input can be completely determined algorithmically. Typical examples are: 1. the Meyer-Ritchie LOOP language [MR67,DW83], a restricted assem bly language with bounded loops as the only allowed deviation from straight-line programming; 2. multi-tape 'lUring Machines each explicitly clocked to halt within a time bound given by some polynomial in the length ofthe input (see [BH79,HB79]); 3. the set of seemingly unrestricted programs for which one can prove 1 termination on all inputs (see [Kre51,Kre58,Ros84]); and 4. finite state and pushdown automata from formal language theory (see [HU79]). lOr, more precisely, the collection of programs, p, ofsome particular general-purpose programming language (e.g., Lisp or Modula-2) for which there is a proof in some par ticular formal system (e.g., Peano Arithmetic) that p halts on all inputs. Artikel-Nr. 9781461266808
Anzahl: 1 verfügbar