Verwandte Artikel zu Data Mining for Association Rules and Sequential Patterns:...

Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms - Softcover

 
9781461265115: Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms

Inhaltsangabe

A state-of-the-art monograph on essential algorithms used for sophisticated data mining methods used with large-scale databases. Essential book for practitioners and professionals in computer science and computer engineering.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Recent advances in data collection, storage technologies, and computing power have made it possible for companies, government agencies and scientific laboratories to keep and manipulate vast amounts of data relating to their activities. This state-of-the-art monograph discusses essential algorithms for sophisticated data mining methods used with large-scale databases, focusing on two key topics: association rules and sequential pattern discovery. This will be an essential book for practitioners and professionals in computer science and computer engineering.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780387950488: Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms

Vorgestellte Ausgabe

ISBN 10:  0387950486 ISBN 13:  9780387950488
Verlag: Springer, 2001
Hardcover

Suchergebnisse für Data Mining for Association Rules and Sequential Patterns:...

Foto des Verkäufers

Jean-Marc Adamo
Verlag: Springer New York, 2012
ISBN 10: 1461265118 ISBN 13: 9781461265115
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Data mining includes a wide range of activities such as classification, clustering, similarity analysis, summarization, association rule and sequential pattern discovery, and so forth. The book focuses on the last two previously listed activities. It provides a unified presentation of algorithms for association rule and sequential pattern discovery. For both mining problems, the presentation relies on the lattice structure of the search space. All algorithms are built as processes running on this structure. Proving their properties takes advantage of the mathematical properties of the structure. Part of the motivation for writing this book was postgraduate teaching. One of the main intentions was to make the book a suitable support for the clear exposition of problems and algorithms as well as a sound base for further discussion and investigation. Since the book only assumes elementary mathematical knowledge in the domains of lattices, combinatorial optimization, probability calculus, and statistics, it is fit for use by undergraduate students as well. The algorithms are described in a C-like pseudo programming language. The computations are shown in great detail. This makes the book also fit for use by implementers: computer scientists in many domains as well as industry engineers. Artikel-Nr. 9781461265115

Verkäufer kontaktieren

Neu kaufen

EUR 109,94
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Adamo, Jean-Marc
Verlag: Springer, 2012
ISBN 10: 1461265118 ISBN 13: 9781461265115
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781461265115_new

Verkäufer kontaktieren

Neu kaufen

EUR 115,84
Währung umrechnen
Versand: EUR 5,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb