Verwandte Artikel zu Integration and Probability

Integration and Probability - Softcover

 
9781461242031: Integration and Probability

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

I Measurable Spaces and Integrable Functions.- 1 ?-algebras.- 1.1 Sub-?-algebras. Intersection of ?-algebras.- 1.2 ?-algebra generated by a family of sets.- 1.3 Limit of a monotone sequence of sets.- 1.4 Theorem (Boolean algebras and monotone classes).- 1.5 Product ?-algebras.- 2 Measurable Spaces.- 2.1 Inverse image of a ?-algebra.- 2.2 Closure under inverse images of the generated ?-algebra.- 2.3 Measurable spaces and measurable mappings.- 2.4 Borel algebras. Measurability and continuity. Operations on measurable functions.- 2.5 Pointwise convergence of measurable mappings.- 2.6 Supremum of a sequence of measurable functions.- 3 Measures and Measure Spaces.- 3.1 Convexity inequality.- 3.2 Measure of limits of monotone sequences.- 3.3 Countable convexity inequality.- 4 Negligible Sets and Classes of Measurable Mappings.- 4.1 Negligible sets.- 4.2 Complete measure spaces.- 4.3 The space Mµ((X, A); (X?,A?)).- 5 Convergence in Mµ ((X,A);(Y,BY)).- 5.1 Convergence almost everywhere.- 5.2 Convergence in measure.- 6 The Space of Integrable Functions.- 6.1 Simple measurable functions.- 6.2 Finite ?-algebras.- 6.3 Simple functions and indicator functions.- 6.4 Approximation by simple functions.- 6.5 Integrable simple functions.- 6.6 Some spaces of bounded measurable functions.- 6.7 The truncation operator.- 6.8 Construction of L1.- 7 Theorems on Passage to the Limit under the Integral Sign.- 7.1 Fatou-Beppo Levi theorem.- 7.2 Lebesgue's theorem on series.- 7.3 Theorem (truncation operator a contraction).- 7.4 Integrability criteria.- 7.5 Definition of the integral on a measurable set.- 7.6 Lebesgue's dominated convergence theorem.- 7.7 Fatou's lemma.- 7.8 Applications of the dominated convergence theorem to integrals which depend on a parameter.- 8 Product Measures and the Fubini-Lebesgue Theorem.- 8.1 Definition of the product measure.- 8.2 Proposition (uniqueness of the product measure).- 8.3 Lemma (measurability of sections).- 8.4 Construction of the product measure.- 8.5 The Fubini-Lebesgue theorem.- 9 The Lp Spaces.- 9.0 Integration of complex-valued functions.- 9.1 Definition of the Lp spaces.- 9.2 Convexity inequalities.- 9.3 Completeness theorem.- 9.4 Notions of duality.- 9.5 The space L?.- 9.6 Theorem (containment relations between Lp spaces if µ(X) < ?).- II Borel Measures and Radon Measures.- 1 Locally Compact Spaces and Partitions of Unity.- 1.0 Definition of locally compact spaces which are countable at infinity.- 1.1 Urysohn's lemma.- 1.2 Support of a function.- 1.3 Subordinate covers.- 1.4 Partitions of unity.- 2 Positive Linear Functionals onCK(X) and Positive Radon Measures.- 2.1 Borel measures.- 2.2 Radon-Riesz theorem.- 2.3 Proof of uniqueness of the Riesz representation.- 2.4 Proof of existence of the Riesz representation.- 3 Regularity of Borel Measures and Lusin's Theorem.- 3.1 Proposition (Borel measures and Radon measures).- 3.2 Theorem (regularity of Radon measures).- 3.3 Theorem (regularity of locally finite Borel measures).- 3.4 The classes G?(X) and F?(X).- 3.5 Theorem (density of CK in Lp).- 4 The Lebesgue Integral on R and on Rn.- 4.1 Definition of the Lebesgue integral on R.- 4.2 Properties of the Lebesgue integral.- 4.3 Lebesgue measure on Rn.- 4.4 Change of variables in the Lebesgue integral on Rn.- 5 Linear Functionals on CK(X) and Signed Radon Measures.- 5.1 Continuous linear functionals on C(X) (X compact).- 5.2 Decomposition theorem.- 5.3 Signed Borel measures.- 5.4 Dirac measures and discrete measures.- 5.5 Support of a signed Radon measure.- 6 Measures and Duality with Respect to Spaces of Continuous Functions on a Locally Compact Space.- 6.1 Definitions.- 6.2 Proposition (relationships among CbCK, and C0)..- 6.3 The Alexandroff compactification.- 6.4 Proposition.- 6.5 The space M1(X).- 6.6 Theorem (M1(X) the dual of C0(X)).- 6.7 Defining convergence by duality.- 6.8 Theorem (relationships among types of convergence).- 6.9 Theorem (narrow density of Md,f1in M1).- III Fourier Analysis.- 1

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9780387944098: Integration and Probability: 157 (Graduate Texts in Mathematics, 157)

Vorgestellte Ausgabe

ISBN 10:  0387944095 ISBN 13:  9780387944098
Verlag: Springer, 1995
Hardcover