Verwandte Artikel zu Global Bifurcations and Chaos: Analytical Methods (Applied...

Global Bifurcations and Chaos: Analytical Methods (Applied Mathematical Sciences): 73 - Softcover

 
9781461210412: Global Bifurcations and Chaos: Analytical Methods (Applied Mathematical Sciences): 73

Inhaltsangabe

1. Introduction: Background for Ordinary Differential Equations and Dynamical Systems.- 1.1. The Structure of Solutions of Ordinary Differential Equations.- 1.1a. Existence and Uniqueness of Solutions.- 1.1b. Dependence on Initial Conditions and Parameters.- 1.1c. Continuation of Solutions.- 1.1d. Autonomous Systems.- 1.1e. Nonautonomous Systems.- 1.1f. Phase Flows.- 1.1g. Phase Space.- 1.1h. Maps.- 1.1 i. Special Solutions.- 1.1j. Stability.- 1.1k. Asymptotic Behavior.- 1.2. Conjugacies.- 1.3. Invariant Manifolds.- 1.4. Transversality, Structural Stability, and Genericity.- 1.5. Bifurcations.- 1.6. Poincaré Maps.- 2. Chaos: Its Descriptions and Conditions for Existence.- 2.1. The Smale Horseshoe.- 2.1a. Definition of the Smale Horseshoe Map.- 2.1b. Construction of the Invariant Set.- 2.1c. Symbolic Dynamics.- 2.1d. The Dynamics on the Invariant Set.- 2.1e. Chaos.- 2.2. Symbolic Dynamics.- 2.2a. The Structure of the Space of Symbol Sequences.- 2.2b. The Shift Map.- 2.2c. The Subshift of Finite Type.- 2.2d. The Case of N = ?.- 2.3. Criteria for Chaos: The Hyperbolic Case.- 2.3a. The Geometry of Chaos.- 2.3b. The Main Theorem.- 2.3c. Sector Bundles.- 2.3d. More Alternate Conditions for Verifying Al and A2.- 2.3e. Hyperbolic Sets.- 2.3f. The Case of an Infinite Number of Horizontal Slabs.- 2.4. Criteria for Chaos: The Nonhyperbolic Case.- 2.4a. The Geometry of Chaos.- 2.4b. The Main Theorem.- 2.4c. Sector Bundles.- 3. Homoclinic and Heteroclinic Motions.- 3.1. Examples and Definitions.- 3.2. Orbits Homoclinic to Hyperbolic Fixed Points of Ordinary Differential Equations.- 3.2a. The Technique of Analysis.- 3.2b. Planar Systems.- 3.2c. Third Order Systems.- i) Orbits Homoclinic to a Saddle Point with Purely Real Eigenvalues.- ii) Orbits Homoclinic to a Saddle-Focus.- 3.2.d. Fourth Order Systems.- i) A Complex Conjugate Pair and Two Real Eigenvalues.- ii) Silnikov's Example in ?4.- 3.2e. Orbits Homoclinic Fixed Points of 4-Dimensional Autonomous Hamiltonian Systems.- i) The Saddle-Focus.- ii) The Saddle with Purely Real Eigenvalues.- iii) Devaney's Example: Transverse Homoclinic Orbits in an Integrable Systems.- 3.2f. Higher Dimensional Results.- 3.3. Orbits Heteroclinic to Hyperbolic Fixed Points of Ordinary Differential Equations.- i) A Heteroclinic Cycle in ?3.- ii) A Heteroclinic Cycle in ?4.- 3.4. Orbits Homoclinic to Periodic Orbits and Invariant Tori.- 4. Global Perturbation Methods for Detecting Chaotic Dynamics.- 4.1. The Three Basic Systems and Their Geometrical Structure.- 4.1a. System I.- i) The Geometric Structure of the Unperturbed Phase Space.- ii) Homoclinic Coordinates.- iii) The Geometric Structure of the Perturbed Phase Space.- iv) The Splitting of the Manifolds.- 4.1b. System II.- i) The Geometric Structure of the Unperturbed Phase Space.- ii) Homoclinic Coordinates.- iii) The Geometric Structure of the Perturbed Phase Space.- iv) The Splitting of the Manifolds.- 4.1c. System III.- i) The Geometric Structure of the Unperturbed Phase Space.- ii) Homoclinic Coordinates.- iii) The Geometric Structure of the Perturbed Phase Space.- iv) The Splitting of the Manifolds.- v) Horseshoes and Arnold Diffusion.- 4.1d. Derivation of the Melnikov Vector.- i) The Time Dependent Melnikov Vector.- ii) An Ordinary Differential Equation for the Melnikov Vector.- iii) Solution of the Ordinary Differential Equation.- iv) The Choice of SP,?S and SP,?u.- v) Elimination of t0.- 4.1e. Reduction to a Poincaré Map.- 4.2. Examples.- 4.2a. Periodically Forced Single Degree of Freedom Systems.- i) The Pendulum: Parametrically Forced at O (?) Amplitude, O (1) Frequency.- ii) The Pendulum: Parametrically Forced at O (1) Amplitude, O (?) Frequency.- 4.2.b. Slowly Varying Oscillators.- i) The Duffing Oscillator with Weak Feedback Control.- ii) The Whirling Pendulum.- 4.2c. Perturbations of Completely Integrable, Two Degree of Freedom Hamiltonian System.- i) A Coupled Pendulum and Harmonic Oscillator.- ii) A Strongly Coupled Two Degree of Free

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,81 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Global Bifurcations and Chaos: Analytical Methods (Applied...

Beispielbild für diese ISBN

Wiggins, Stephen
Verlag: Springer, 2014
ISBN 10: 1461210410 ISBN 13: 9781461210412
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781461210412_new

Verkäufer kontaktieren

Neu kaufen

EUR 60,32
Währung umrechnen
Versand: EUR 13,81
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Wiggins, Stephen (Author)
Verlag: Springer, 2014
ISBN 10: 1461210410 ISBN 13: 9781461210412
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. reprint edition. 509 pages. 9.00x6.00x1.25 inches. In Stock. Artikel-Nr. x-1461210410

Verkäufer kontaktieren

Neu kaufen

EUR 81,69
Währung umrechnen
Versand: EUR 28,81
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Stephen Wiggins
ISBN 10: 1461210410 ISBN 13: 9781461210412
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory. Artikel-Nr. 9781461210412

Verkäufer kontaktieren

Neu kaufen

EUR 59,27
Währung umrechnen
Versand: EUR 63,84
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb