Verwandte Artikel zu Models of Neural Networks III: Association, Generalization,...

Models of Neural Networks III: Association, Generalization, and Representation - Softcover

 
9781461207245: Models of Neural Networks III: Association, Generalization, and Representation

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

1. Global Analysis of Recurrent Neural Networks.- 1.1 Global Analysis-Why?.- 1.2 A Framework for Neural Dynamics.- 1.2.1 Description of Single Neurons.- 1.2.2 Discrete-Time Dynamics.- 1.2.3 Continuous-Time Dynamics.- 1.2.4 Hebbian Learning.- 1.3 Fixed Points.- 1.3.1 Sequential Dynamics: Hopfield Model.- 1.3.2 Parallel Dynamics: Little Model.- 1.3.3 Continuous Time: Graded-Response Neurons.- 1.3.4 Iterated-Map Networks.- 1.3.5 Distributed Dynamics.- 1.3.6 Network Performance.- 1.3.7 Intermezzo: Delayed Graded-Response Neurons.- 1.4 Periodic Limit Cycles and Beyond.- 1.4.1 Discrete-Time Dynamics.- 1.4.2 Continuous-Time Dynamics.- 1.5 Synchronization of Action Potentials.- 1.5.1 Phase Locking.- 1.5.2 Rapid Convergence.- 1.6 Conclusions.- References.- 2. Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns.- 2.1 Introduction.- 2.2 Correlation-Based Models.- 2.2.1 The Von der Malsburg Model of V1 Development.- 2.2.2 Mathematical Formulation.- 2.2.3 Semilinear Models.- 2.2.4 How Semilinear Models Behave.- 2.2.5 Understanding Ocular Dominance and Orientation Columns with Semilinear Models.- 2.2.6 Related Semilinear Models.- 2.3 The Problem of Map Structure.- 2.4 The Computational Significance of Correlatin-Based Rules.- 2.4.1 Efficient Representation of Information.- 2.4.2 Self-Organizing Maps and Associative Memories.- 2.5 Open Questions.- References.- 3. Associative Data Storage and Retrieval in Neural Networks.- 3.1 Introduction and Overview.- 3.1.1 Memory and Representation.- 3.1.2 Retrieval from the Memory.- 3.1.3 Fault Tolerance in Addressing.- 3.1.4 Various Memory Tasks.- 3.1.5 Retrieval Errors.- 3.2 Neural Associatve Memory Models.- 3.2.1 Retrieval Process.- 3.2.2 Storage Process.- 3.2.3 Distributed Storage.- 3.3 Analysis of the Retrieval Process.- 3.3.1 Random Pattern Generation.- 3.3.2 Site Averaging and Threshold Setting.- 3.3.3 Binary Storage Procedure.- 3.3.4 Incremental Storage Procedure.- 3.4 Information Theory of the Memory Process.- 3.4.1 Mean Information Content of Data.- 3.4.2 Association Capacity.- 3.4.3 Including the Addressing Process.- 3.4.4 Asymptotic Memory Capacities.- 3.5 Model Performance.- 3.5.1 Binary Storage.- 3.5.2 Incremental Storage.- 3.6 Discussion.- 3.6.1 Heteroassociation.- 3.6.2 Autoassociation.- 3.6.3 Relations to Other Approaches.- 3.6.4 Summary.- Appendix 3.1.- Appendix 3.2.- References.- 4. Inferences Modeled with Neural Networks.- 4.1 Introduction.- 4.1.1 Useful Definitions.- 4.1.2 Proposed Framework.- 4.1.3 How Far Can We Go with the Formal-Logic Approach?.- 4.2 Model for Cognitive Systems and for Experiences.- 4.2.1 Cognitive Systems.- 4.2.2 Experience.- 4.2.3 From the Hebb Rule to the Postulate?.- 4.3 Inductive Inference.- 4.3.1 Optimal Inductive Inference.- 4.3.2 Unique Inductive Inference.- 4.3.3 Practicability of the Postulate.- 4.3.4 Biological Example.- 4.3.5 Limitation of Inductive Inference in Terms of Complexity.- 4.3.6 Summary for Inductive Inference.- 4.4 External Memory.- 4.4.1 Counting.- 4.5 Limited Use of External Memory.- 4.5.1 Counting.- 4.5.2 On Wittgenstein's Paradox.- 4.6 Deductive Inference.- 4.6.1 Biological Example.- 4.6.2 Mathematical Examples.- 4.6.3 Relevant Signal Flow.- 4.6.4 Mathematical Examples Revisited.- 4.6.5 Further Ansatz.- 4.6.6 Proofs by Complete Induction.- 4.6.7 On Sieves.- 4.7 Conclusion.- References.- 5. Statistical Mechanics of Generalization.- 5.1 Introduction.- 5.2 General Results.- 5.2.1 Phase Space of Neural Networks.- 5.2.2 VC Dimension and Worst-Case Results.- 5.2.3 Bayesian Approach and Statistical Mechanics.- 5.2.4 Information-Theoretic Results.- 5.2.5 Smooth Networks.- 5.3 The Perceptron.- 5.3.1 Some General Properties.- 5.3.2 Replica Theory.- 5.3.3 Results for Bayes and Gibbs Algorithms.- 5.4 Geometry in Phase Space and Asymptotic Scaling.- 5.5 Applications to Perceptrons.- 5.5.1 Simple Learning: Hebb Rule.- 5.5.2 Overfitting.- 5.5.3 Maximal Stability.- 5.5.4 Queries.- 5.5.5 Discontinuous Lea

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2011
  • ISBN 10 146120724X
  • ISBN 13 9781461207245
  • EinbandPaperback
  • SpracheEnglisch
  • Kontakt zum HerstellerNicht verfügbar

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels