Verwandte Artikel zu Introduction to Graphical Modelling

Introduction to Graphical Modelling - Softcover

 
9781461204947: Introduction to Graphical Modelling

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

1 Preliminaries.- 1.1 Independence and Conditional Independence.- 1.2 Undirected Graphs.- 1.3 Data, Models, and Graphs.- 1.4 Simpson's Paradox.- 1.5 Overview of the Book.- 2 Discrete Models.- 2.1 Three-Way Tables.- 2.1.1 Example: Lizard Perching Behaviour.- 2.2 Multi-Way Tables.- 2.2.1 Likelihood Equations.- 2.2.2 Deviance.- 2.2.3 Graphs and Formulae.- 2.2.4 Example: Risk Factors for Coronary Heart Disease.- 2.2.5 Example: Chromosome Mapping.- 2.2.6 Example: University Admissions.- 3 Continuous Models.- 3.1 Graphical Gaussian Models.- 3.1.1 Likelihood.- 3.1.2 Maximum Likelihood Estimation.- 3.1.3 Deviance.- 4 3.1.4 Example: Digoxin Clearance.- 3.1.5 Example: Anxiety and Anger.- 3.1.6 Example: Mathematics Marks.- 3.2 Regression Models.- 3.2.1 Example: Determinants of Bone Mineral Content.- 4 Mixed Models.- 4.1 Hierarchical Interaction Models.- 4.1.1 Models with One Discrete and One Continuous Variable.- 4.1.2 A Model with Two Discrete and Two Continuous Variables.- 4.1.3 Model Formulae.- 4.1.4 Formulae and Graphs.- 4.1.5 Maximum Likelihood Estimation.- 4.1.6 Deviance.- 4.1.7 A Simple Example.- 4.1.8 Example: A Drug Trial Using Mice.- 4.1.9 Example: Rats' Weights.- 4.1.10 Example: Estrogen and Lipid Metabolism.- 4.2 Breaking Models into Smaller Ones.- 4.3 Mean Linearity.- 4.4 Decomposable Models.- 4.5 CG-Regression Models.- 4.5.1 Example: Health Status Indicators.- 4.5.2 Example: Side Effects of an Antiepileptic Drug.- 4.6 Incomplete Data.- 4.6.1 Assumptions for Missing Data.- 4.6.2 Some Latent Variable Models.- 4.6.3 Example: The Components of a Normal Mixture.- 4.6.4 Example: Mathematics Marks, Revisited.- 4.7 Discriminant Analysis.- 4.7.1 Example: Breast Cancer.- 5 Hypothesis Testing.- 5.1 An Overview.- 5.2 X2-Tests.- 5.3 F-Tests.- 5.4 Exact Conditional Tests.- 5.5 Deviance-Based Tests.- 5.6 Permutation F-Test.- 5.7 Pearson x2-Test.- 5.8 Fisher's Exact Test.- 5.9 Rank Tests.- 5.10 Wilcoxon Test.- 5.11 Kruskal-Wallis Test.- 5.12 Jonckheere-Terpstra Test.- 5.13 Tests for Variance Homogeneity.- 5.14 Tests for Equality of Means Given Homogeneity.- 5.15 Hotelling's T2.- 6 Model Selection and Criticism.- 6.1 Stepwise Selection.- 6.1.1 Forward Selection.- 6.1.2 Restricting Selection to Decomposable Models.- 6.1.3 Using F-Tests.- 6.1.4 Coherence.- 6.1.5 Other Variants of Stepwise Selection.- 6.2 The EH-Procedure.- 6.2.1 Example: Estrogen and Lipid Metabolism, Continued.- 6.3 Selection Using Information Criteria.- 6.4 Comparison of the Methods.- 6.5 Box-Cox Transformations.- 6.6 Residual Analysis.- 6.7 Dichotomization.- 7 Directed Graphs and Their Models.- 7.1 Directed Acyclic Graphs.- 7.1.1 Markov Properties of DAGs.- 7.1.2 Modelling with DAGs.- 7.1.3 Example: Side Effects of Neuroleptics.- 7.2 Chain Graphs.- 7.2.1 Markov Properties of Chain Graphs.- 7.2.2 Modelling with Chain Graphs.- 7.2.3 Example: Membership of the "Leading Crowd".- 7.3 Local Independence Graphs.- 7.4 Covariance Graphs.- 7.5 Chain Graphs with Alternative Markov Properties.- 7.6 Reciprocal Graphs.- 8 Causal Inference.- 8.1 Philosophical Aspects.- 8.2 Rubin's Causal Model.- 8.2.1 Estimating Causal Effects.- 8.2.2 Ignorability.- 8.2.3 Propensity Score.- 8.2.4 Causal Hypothesis Testing.- 8.3 Pearl's Causal Graphs.- 8.3.1 A Simple Causal model.- 8.3.2 Causal Graphs.- 8.3.3 The Back-Door Criterion.- 8.3.4 The Front-Door Criterion.- 8.4 Discussion.- 8.4.1 Comparison of the Two Approaches.- 8.4.2 Operational Implications.- A The MINI Command Language.- A.1 Introduction.- A.2 Declaring Variables.- A.3 Undirected Models.- A.3.1 Deleting Edges.- A.3.2 Adding Edges.- A.3.3 Other Model-Changing Commands.- A.3.4 Model Properties.- A.4 Block-Recursive Models.- A.4.1 Defining the Block Structure.- A.4.2 Block Mode.- A.4.3 Defining Block-Recursive Models.- A.4.4 Working with Component Models.- A.5 Reading and Manipulating Data.- A.5.1 Reading Casewise Data.- A.5.2 Reading Counts, Means, and Covariances.- A.5.3 Transforming Data.- A.5.4 Restricting Observations.- A.5.5 Genera

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben