Verwandte Artikel zu Neural Networks and Statistical Learning

Neural Networks and Statistical Learning - Softcover

 
9781447174547: Neural Networks and Statistical Learning

Inhaltsangabe

This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing.

Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:

• multilayer perceptron;
• the Hopfield network;
• associative memory models;• clustering models and algorithms;
• t he radial basis function network;
• recurrent neural networks;
• nonnegative matrix factorization;
• independent component analysis;
•probabilistic and Bayesian networks; and
• fuzzy sets and logic.

Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Ke-Lin Du is currently the founder and CEO at Xonlink Inc., China. He is also an Affiliate Associate Professor at the Department of Electrical and Computer Engineering, Concordia University, Canada. In the past, he held positions at Huawei Technologies, the China Academy of Telecommunication Technology, the Chinese University of Hong Kong, the Hong Kong University of Science and Technology, Concordia University, and Enjoyor Inc. He has published four books and over 50 papers, and filed over 30 patents. A Senior Member of the IEEE, his current research interests include signal processing, neural networks, intelligent systems, and wireless communications.

 MNS Swamy is currently a Research Professor and holder of the Concordia Tier I Research Chair of Signal Processing at the Department of Electrical and Computer Engineering, Concordia University, where he was Dean of the Faculty of Engineering and ComputerScience from 1977 to 1993 and the founding Chair of the EE department. He has published extensively in the areas of circuits, systems and signal processing, and co-authored nine books and holds five patents. Professor Swamy is a Fellow of the IEEE, IET (UK) and EIC (Canada), and has received many IEEE-CAS awards, including the Guillemin-Cauer award in 1986, as well as the Education Award and the Golden Jubilee Medal, both in 2000.  He has been the Editor-in-Chief of the journal Circuits, Systems and Signal Processing (CSSP) since 1999. Recently, CSSP has instituted the Best Paper Award in his name.

Von der hinteren Coverseite

This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing.

Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:

multilayer perceptron;
the Hopfield network;
associative memory models;
clustering models and algorithms;
t he radial basis function network;
recurrent neural networks;
nonnegative matrix factorization;
independent component analysis;
probabilistic and Bayesian networks; and
fuzzy sets and logic.

Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2020
  • ISBN 10 1447174542
  • ISBN 13 9781447174547
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage2
  • Anzahl der Seiten1020
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781447174516: Neural Networks and Statistical Learning

Vorgestellte Ausgabe

ISBN 10:  1447174518 ISBN 13:  9781447174516
Verlag: Springer, 2019
Hardcover

Suchergebnisse für Neural Networks and Statistical Learning

Foto des Verkäufers

M. N. S. Swamy
ISBN 10: 1447174542 ISBN 13: 9781447174547
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includessixnew chapters that correspond to the recent advances in computational learning theory,sparsecoding, deep learning, big data and cloud computing.Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:- multilayer perceptron;- the Hopfield network;- associative memory models;- clustering models and algorithms;- t he radial basis function network;- recurrent neural networks;- nonnegative matrix factorization;- independent component analysis;-probabilistic and Bayesian networks; and- fuzzy sets and logic.Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning. Artikel-Nr. 9781447174547

Verkäufer kontaktieren

Neu kaufen

EUR 113,44
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Du, Ke-Lin; Swamy, M. N. S.
Verlag: Springer, 2020
ISBN 10: 1447174542 ISBN 13: 9781447174547
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781447174547_new

Verkäufer kontaktieren

Neu kaufen

EUR 119,28
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb