Verwandte Artikel zu Harmonic Analysis of Operators on Hilbert Space: 0...

Harmonic Analysis of Operators on Hilbert Space: 0 (Universitext) - Softcover

 
9781441960931: Harmonic Analysis of Operators on Hilbert Space: 0 (Universitext)

Inhaltsangabe

The existence of unitary dilations makes it possible to study arbitrary contractions on a Hilbert space using the tools of harmonic analysis.  The first edition of this book was an account of the progress done in this direction in 1950-70.  Since then, this work has influenced many other areas of mathematics, most notably interpolation theory and control theory.  This second edition, in addition to revising and amending the original text, focuses on further developments of the theory, including the study of two operator classes: operators whose powers do not converge strongly to zero, and operators whose functional calculus (as introduced in Chapter III) is not injective.  For both of these classes, a wealth of material on structure, classification and invariant subspaces is included in Chapters IX and X.  Several chapters conclude with a sketch of other developments related with (and developing) the material of the first edition.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Béla Szőkefalvi-Nagy (1913-1998) was a famed mathematician for his work in functional analysis and operator theory. He was the recipient of the Lomonosov Medal in 1979. Ciprian Ilie Foias is currently a distinguished professor in the department of mathematics at Texas A&M University in College Station. He is well known for his work in operator theory, infinite dimensional dynamical systems, ergodic theory, as well as applications in such diverse fields as control theory, mathematical biology and mathematical economics. Among many other honors, Foias was awarded the Norbert Wiener Prize in applied Mathematics in 1995. Hari Bercovici is currently a professor of mathematics at Indiana University. He works in operator theory and function theory. László Kérchy is the director of the Bolyai Institute at Szeged University. He made important contributions to operator theory, many of them represented in this monograph.

Von der hinteren Coverseite

The existence of unitary dilations makes it possible to study arbitrary contractions on a Hilbert space using the tools of harmonic analysis.  The first edition of this book was an account of the progress done in this direction in 1950-70.  Since then, this work has influenced many other areas of mathematics, most notably interpolation theory and control theory.

This second edition, in addition to revising and amending the original text, focuses on further developments of the theory.  Specifically, the last two chapters of the book continue and complete the study of two operator classes: operators whose powers do not converge strongly to zero, and operators whose functional calculus (as introduced in Chapter III) is not injective.  For both of these classes, a wealth of material on structure, classification and invariant subspaces is included in Chapters IX and X.  Several chapters conclude with a sketch of other developments related with (and developing) the material of the first edition.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,86 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Harmonic Analysis of Operators on Hilbert Space: 0...

Beispielbild für diese ISBN

Sz Nagy, Béla; Foias, Ciprian; Bercovici, Hari; Kérchy, László
Verlag: Springer, 2010
ISBN 10: 1441960937 ISBN 13: 9781441960931
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In English. Artikel-Nr. ria9781441960931_new

Verkäufer kontaktieren

Neu kaufen

EUR 88,33
Währung umrechnen
Versand: EUR 13,86
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Béla Sz Nagy
Verlag: Springer New York, 2010
ISBN 10: 1441960937 ISBN 13: 9781441960931
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The existence of unitary dilations makes it possible to study arbitrary contractions on a Hilbert space using the tools of harmonic analysis. The first edition of this book was an account of the progress done in this direction in 1950-70. Since then, this work has influenced many other areas of mathematics, most notably interpolation theory and control theory.This second edition, in addition to revising and amending the original text, focuses on further developments of the theory. Specifically, the last two chapters of the book continue and complete the study of two operator classes: operators whose powers do not converge strongly to zero, and operators whose functional calculus (as introduced in Chapter III) is not injective. For both of these classes, a wealth of material on structure, classification and invariant subspaces is included in Chapters IX and X. Several chapters conclude with a sketch of other developments related with (and developing) the material of the first edition. Artikel-Nr. 9781441960931

Verkäufer kontaktieren

Neu kaufen

EUR 91,48
Währung umrechnen
Versand: EUR 63,56
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb