Verwandte Artikel zu Nondifferentiable Optimization and Polynomial Problems:...

Nondifferentiable Optimization and Polynomial Problems: 24 (Nonconvex Optimization and Its Applications) - Softcover

 
9781441947925: Nondifferentiable Optimization and Polynomial Problems: 24 (Nonconvex Optimization and Its Applications)

Reseña del editor

Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, ... , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), ... , Pm (:e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(:e) subject to constraints (0.2) Pi (:e) =0, i=l, ... ,m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) ~ 0 is equivalent to P(:e) + y2 = 0). Boolean and mixed polynomial problems can be written in usual form by adding for each boolean variable z the equality: Z2 - Z = O. Let a = {al, ... ,a } be integer vector with nonnegative entries {a;}f=l. n Denote by R[a](:e) monomial in n variables of the form: n R[a](:e) = IT :ef'; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[a](:e), aEA{P) IX x Nondifferentiable optimization and polynomial problems where A(P) is the set of monomials contained in polynomial P.

Reseña del editor

The book is devoted to investigation of polynomial optimization problems, including Boolean problems which are the most important part of mathematical programming. It is shown that the methods of nondifferentiable optimization can be used for finding solutions of many classes of polynomial problems and for obtaining good dual estimates for optimal objective value in these problems.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2011
  • ISBN 10 1441947922
  • ISBN 13 9781441947925
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten416

EUR 14,04 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780792349976: Nondifferentiable Optimization and Polynomial Problems: 24 (Nonconvex Optimization and Its Applications)

Vorgestellte Ausgabe

ISBN 10:  0792349970 ISBN 13:  9780792349976
Verlag: Springer, 1998
Hardcover

Suchergebnisse für Nondifferentiable Optimization and Polynomial Problems:...

Beispielbild für diese ISBN

Shor, N.Z. Z.
Verlag: Springer, 2011
ISBN 10: 1441947922 ISBN 13: 9781441947925
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In English. Artikel-Nr. ria9781441947925_new

Verkäufer kontaktieren

Neu kaufen

EUR 168,08
Währung umrechnen
Versand: EUR 14,04
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

N. Z. Shor
Verlag: Springer US, 2011
ISBN 10: 1441947922 ISBN 13: 9781441947925
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, . , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), . , Pm (:e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(:e) subject to constraints (0.2) Pi (:e) =0, i=l, . ,m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) ~ 0 is equivalent to P(:e) + y2 = 0). Boolean and mixed polynomial problems can be written in usual form by adding for each boolean variable z the equality: Z2 - Z = O. Let a = {al, . ,a } be integer vector with nonnegative entries {a;}f=l. n Denote by R[a](:e) monomial in n variables of the form: n R[a](:e) = IT :ef'; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[a](:e), aEA{P) IX x Nondifferentiable optimization and polynomial problems where A(P) is the set of monomials contained in polynomial P. Artikel-Nr. 9781441947925

Verkäufer kontaktieren

Neu kaufen

EUR 164,49
Währung umrechnen
Versand: EUR 31,13
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb