Addresses the privacy issue of On-Line Analytic Processing systems
Details how to keep the performance overhead of these security methods at a reasonable level
Examines how a balance between security, availability, and performance can feasibly be achieved in OLAP systems
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
On-Line Analytic Processing (OLAP) systems usually need to meet two conflicting goals. First, the sensitive data stored in underlying data warehouses must be kept secret. Second, analytical queries about the data must be allowed for decision support purposes. The main challenge is that sensitive data can be inferred from answers to seemingly innocent aggregations of the data. Existing inference control methods in statistical databases usually exhibit high performance overhead and limited effectiveness when applied to OLAP systems.
Preserving Privacy in On-Line Analytical Processing reviews a series of methods that can precisely answer data cube-style OLAP queries regarding sensitive data while provably preventing adversaries from inferring the data. How to keep the performance overhead of these security methods at a reasonable level is also addressed. Achieving a balance between security, availability, and performance is shown to be feasible in OLAP systems.
Preserving Privacy in On-Line Analytical Processing is designed for the professional market, composed of practitioners and researchers in industry. This book is also appropriate for graduate-level students in computer science and engineering.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Preserving Privacy for On-Line Analytical Processing addresses the privacy issue of On-Line Analytic Processing (OLAP) systems. OLAP systems usually need to meet two conflicting goals. First, the sensitive data stored in underlying data warehouses must be kept secret. Second, analytical queries about the data must be allowed for decision support purposes. The main challenge is that sensitive data can be inferred from answers to seemingly innocent aggregations of the data. This volume reviews a series of methods that can precisely answer data cube-style OLAP, regarding sensitive data while provably preventing adversaries from inferring data.Preserving Privacy for On-Line Analytical Processing is appropriate for practitioners in industry as well as graduate-level students in computer science and engineering.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 192 pp. Englisch. Artikel-Nr. 9781441942784
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Preserving Privacy for On-Line Analytical Processing addresses the privacy issue of On-Line Analytic Processing (OLAP) systems. OLAP systems usually need to meet two conflicting goals. First, the sensitive data stored in underlying data warehouses must be kept secret. Second, analytical queries about the data must be allowed for decision support purposes. The main challenge is that sensitive data can be inferred from answers to seemingly innocent aggregations of the data. This volume reviews a series of methods that can precisely answer data cube-style OLAP, regarding sensitive data while provably preventing adversaries from inferring data.Preserving Privacy for On-Line Analytical Processing is appropriate for practitioners in industry as well as graduate-level students in computer science and engineering. Artikel-Nr. 9781441942784
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781441942784_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 192 pages. 8.98x5.98x0.63 inches. In Stock. Artikel-Nr. x-1441942785
Anzahl: 2 verfügbar