Verwandte Artikel zu Probability Approximations via the Poisson Clumping...

Probability Approximations via the Poisson Clumping Heuristic: 77 (Applied Mathematical Sciences) - Softcover

 
9781441930880: Probability Approximations via the Poisson Clumping Heuristic: 77 (Applied Mathematical Sciences)

Inhaltsangabe

If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase? Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings? If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex? If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well? If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey? If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions? These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min­ ima, in some sense.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase? Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings? If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex? If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well? If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey? If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions? These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min­ ima, in some sense.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2010
  • ISBN 10 1441930884
  • ISBN 13 9781441930880
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten288
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780387968995: Probability Approximations via the Poisson Clumping Heuristic: 77 (Applied Mathematical Sciences)

Vorgestellte Ausgabe

ISBN 10:  0387968997 ISBN 13:  9780387968995
Verlag: Springer, 1988
Hardcover

Suchergebnisse für Probability Approximations via the Poisson Clumping...

Foto des Verkäufers

David Aldous
ISBN 10: 1441930884 ISBN 13: 9781441930880
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points Of the smallest circle containing 4 points Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min ima, in some sense. Artikel-Nr. 9781441930880

Verkäufer kontaktieren

Neu kaufen

EUR 134,52
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Aldous, David
Verlag: Springer, 2010
ISBN 10: 1441930884 ISBN 13: 9781441930880
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781441930880_new

Verkäufer kontaktieren

Neu kaufen

EUR 144,75
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb