This book is an informal yet systematic presentation of lectures given by the author on Boolean algebras. The author’s style is characteristically bold and fresh. He treats Boolean algebras, develops some intriguing ideas, and provides rare insights. Exercises are generously sprinkled through the text for course study. The second edition has been greatly expanded and rewritten, specific changes include:
* More detail explanations of the material in every section, making the text more accessible to undergraduates
* Three times as many exercises as well as a solutions manual
* A more careful explanation of the relationship between Boolean rings and Boolean algebras has been added;
* thirteen new chapters, including ones on topology and continuous functions and others on the extension theorem for homomorphisms, congruences and quotient algebras, lattice of ideals, and duality theory for products.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In a bold and refreshingly informal style, this exciting text steers a middle course between elementary texts emphasizing connections with philosophy, logic, and electronic circuit design, and profound treatises aimed at advanced graduate students and professional mathematicians. It is written for readers who have studied at least two years of college-level mathematics. With carefully crafted prose, lucid explanations, and illuminating insights, it guides students to some of the deeper results of Boolean algebra --- and in particular to the important interconnections with topology --- without assuming a background in algebra, topology, and set theory. The parts of those subjects that are needed to understand the material are developed within the text itself.
Highlights of the book include the normal form theorem; the homomorphism extension theorem; the isomorphism theorem for countable atomless Boolean algebras; the maximal ideal theorem; the celebrated Stone representation theorem; the existence and uniqueness theorems for canonical extensions and completions; Tarski s isomorphism of factors theorem for countably complete Boolean algebras, and Hanf s related counterexamples; and an extensive treatment of the algebraic-topological duality, including the duality between ideals and open sets, homomorphisms and continuous functions, subalgebras and quotient spaces, and direct products and Stone-Cech compactifications.
A special feature of the book is the large number of exercises of varying levels of difficulty, from routine problems that help readers understand the basic definitions and theorems, to intermediate problems that extend or enrich material developed in the text, to harder problems that explore important ideas either not treated in the text, or that go substantially beyond its treatment. Hints for the solutions to the harder problems are given in an appendix. A detailed solutions manual for all exercises is available for instructors who adopt the text for a course.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In a bold and refreshingly informal style, this exciting text steers a middle course between elementary texts emphasizing connections with philosophy, logic, and electronic circuit design, and profound treatises aimed at advanced graduate students and professional mathematicians. It is written for readers who have studied at least two years of college-level mathematics. With carefully crafted prose, lucid explanations, and illuminating insights, it guides students to some of the deeper results of Boolean algebra --- and in particular to the important interconnections with topology --- without assuming a background in algebra, topology, and set theory. The parts of those subjects that are needed to understand the material are developed within the text itself.Highlights of the book include the normal form theorem; the homomorphism extension theorem; the isomorphism theorem for countable atomless Boolean algebras; the maximal ideal theorem; the celebrated Stone representation theorem; the existence and uniqueness theorems for canonical extensions and completions; Tarski's isomorphism of factors theorem for countably complete Boolean algebras, and Hanf's related counterexamples; and an extensive treatment of the algebraic-topological duality, including the duality between ideals and open sets, homomorphisms and continuous functions, subalgebras and quotient spaces, and direct products and Stone-Cech compactifications.A special feature of the book is the large number of exercises of varying levels of difficulty, from routine problems that help readers understand the basic definitions and theorems, to intermediate problems that extend or enrich material developed in the text, to harder problems that explore important ideas either not treated in the text, or that go substantially beyond its treatment. Hints for the solutions to the harder problems are given in an appendix. A detailed solutions manual for all exercises isavailable for instructors who adopt the text for a course. Artikel-Nr. 9781441923240
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -The theory of Boolean algebras was created in 1847 by the English mat- matician George Boole. He conceived it as a calculus (or arithmetic) suitable for a mathematical analysis of logic. The form of his calculus was rather di erent from the modern version, which came into being during the - riod 1864¿1895 through the contributions of William Stanley Jevons, Aug- tus De Morgan, Charles Sanders Peirce, and Ernst Schr¿ oder. A foundation of the calculus as an abstract algebraic discipline, axiomatized by a set of equations, and admitting many di erent interpretations, was carried out by Edward Huntington in 1904. Only with the work of Marshall Stone and Alfred Tarski in the 1930s, however, did Boolean algebra free itself completely from the bonds of logic and become a modern mathematical discipline, with deep theorems and - portantconnections toseveral otherbranchesofmathematics, includingal- bra,analysis, logic, measuretheory, probability andstatistics, settheory, and topology. For instance, in logic, beyond its close connection to propositional logic, Boolean algebra has found applications in such diverse areas as the proof of the completeness theorem for rst-order logic, the proof of the Lo ¿ s conjecture for countable rst-order theories categorical in power, and proofs of the independence of the axiom of choice and the continuum hypothesis in set theory. In analysis, Stone¿s discoveries of the Stone¿Cech compac- cation and the Stone¿Weierstrass approximation theorem were intimately connected to his study of Boolean algebras.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 588 pp. Englisch. Artikel-Nr. 9781441923240
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In English. Artikel-Nr. ria9781441923240_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 588 pages. 9.50x6.25x1.33 inches. In Stock. Artikel-Nr. x-1441923241
Anzahl: 2 verfügbar