Microprocessors increasingly control and monitor our most critical systems, including automobiles, airliners, medical systems, transportation grids, and defense systems. The relentless march of semiconductor process technology has given engineers exponentially increasing transistor budgets at constant recurring cost. This has encouraged increased functional integration onto a single die, as well as increased architectural sophistication of the functional units themselves. Additionally, design cycle times are decreasing, thus putting increased schedule pressure on engineers. Not surprisingly, this environment has led to a number of uncaught design flaws. Traditional simulation-based design verification has not kept up with the scale or pace of modern microprocessor system design. Formal verification methods offer the promise of improved bug-finding capability, as well as the ability to establish functional correctness of a detailed design relative to a high-level specification. However, widespread use of formal methods has had to await breakthroughs in automated reasoning, integration with engineering design languages and processes, scalability, and usability.
This book presents several breakthrough design and verification techniques that allow these powerful formal methods to be employed in the real world of high-assurance microprocessor system design.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Design and Verification of Microprocessor Systems for High-Assurance Applications
Edited by:
David S. Hardin
This book examines several leading-edge design and verification technologies that have been successfully applied to microprocessor systems for high-assurance applications at various levels from arithmetic circuits to microcode to instruction sets to operating systems to applications. We focus on recent hardware, software, and system designs that have actually been built and deployed, and feature systems that have been certified at high Evaluation Assurance Levels, namely the Rockwell Collins AAMP7G microprocessor (EAL7) and the Green Hills INTEGRITY-178B separation kernel (EAL6+). The contributing authors to this book have endeavored to bring forth truly new material on significant, modern design and verification efforts; many of the results described herein were obtained only within the past year.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 436 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 6155905/12
Anzahl: 1 verfügbar
Anbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich
Zustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Artikel-Nr. Z1-U-021-01457
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: Used. pp. 452. Artikel-Nr. 181152581
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: Used. pp. 452 180 Illus. Artikel-Nr. 6695312
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Microprocessors increasingly control and monitor our most critical systems, including automobiles, airliners, medical systems, transportation grids, and defense systems. The relentless march of semiconductor process technology has given engineers exponentially increasing transistor budgets at constant recurring cost. This has encouraged increased functional integration onto a single die, as well as increased architectural sophistication of the functional units themselves. Additionally, design cycle times are decreasing, thus putting increased schedule pressure on engineers. Not surprisingly, this environment has led to a number of uncaught design flaws. Traditional simulation-based design verification has not kept up with the scale or pace of modern microprocessor system design. Formal verification methods offer the promise of improved bug-finding capability, as well as the ability to establish functional correctness of a detailed design relative to a high-level specification. However, widespread use of formal methods has had to await breakthroughs in automated reasoning, integration with engineering design languages and processes, scalability, and usability.This book presents several breakthrough design and verification techniques that allow these powerful formal methods to be employed in the real world of high-assurance microprocessor system design. Artikel-Nr. 9781441915382
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781441915382_new
Anzahl: Mehr als 20 verfügbar