Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)―classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.
The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twin SVMs for binary classification problems, SVMs for solving multi-classification problems based on ordinal regression, SVMs for semi-supervised problems, and SVMs for problems with perturbations.
To improve readability, concepts, methods, and results are introduced graphically and with clear explanations. For important concepts and algorithms, such as the Crammer-Singer SVM for multi-class classification problems, the text provides geometric interpretations that are not depicted in current literature.
Enabling a sound understanding of SVMs, this book gives beginners as well as more experienced researchers and engineers the tools to solve real-world problems using SVMs.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Naiyang Deng, Yingjie Tian, Chunhua Zhang
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Artikel-Nr. 595835341
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Enabling a sound understanding of SVMs, this book gives readers the tools to solve real-world problems using SVMs. It presents an accessible treatment of the two main components of SVMs-classification problems and regression problems. The authors emphasize the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built. They construct SVMs for semi-supervised, knowledge-based, and robust classification problems. They also cover SVMs for Universum, privileged, multi-class, multi-instance, and multi-label classification problems. Artikel-Nr. 9781439857922
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781439857922_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 300 pages. 9.45x6.46x0.98 inches. In Stock. Artikel-Nr. x-143985792X
Anzahl: 2 verfügbar