Verwandte Artikel zu Particle Swarm Optimisation: Classical and Quantum...

Particle Swarm Optimisation: Classical and Quantum Perspectives (Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series) - Hardcover

 
9781439835760: Particle Swarm Optimisation: Classical and Quantum Perspectives (Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series)

Inhaltsangabe

Although the particle swarm optimisation (PSO) algorithm requires relatively few parameters and is computationally simple and easy to implement, it is not a globally convergent algorithm. In Particle Swarm Optimisation: Classical and Quantum Perspectives, the authors introduce their concept of quantum-behaved particles inspired by quantum mechanics, which leads to the quantum-behaved particle swarm optimisation (QPSO) algorithm. This globally convergent algorithm has fewer parameters, a faster convergence rate, and stronger searchability for complex problems.

The book presents the concepts of optimisation problems as well as random search methods for optimisation before discussing the principles of the PSO algorithm. Examples illustrate how the PSO algorithm solves optimisation problems. The authors also analyse the reasons behind the shortcomings of the PSO algorithm.

Moving on to the QPSO algorithm, the authors give a thorough overview of the literature on QPSO, describe the fundamental model for the QPSO algorithm, and explore applications of the algorithm to solve typical optimisation problems. They also discuss some advanced theoretical topics, including the behaviour of individual particles, global convergence, computational complexity, convergence rate, and parameter selection. The text closes with coverage of several real-world applications, including inverse problems, optimal design of digital filters, economic dispatch problems, biological multiple sequence alignment, and image processing. MATLAB®, Fortran, and C++ source codes for the main algorithms are provided on an accompanying downloadable resources.

Helping you numerically solve optimisation problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. It not only explains how to use the algorithms, but also covers advanced topics that establish the groundwork for understanding.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Jun Sun is an associate professor in the Department of Computer Science and Technology at Jiangnan University. He is also a researcher at the Key Laboratory of Advanced Process Control for Light Industry in China. He has a Ph.D. in control theory and control engineering. His research interests include computational intelligence, numerical optimisation, and machine learning.

Choi-Hong Lai is a professor of numerical mathematics in the Department of Mathematical Sciences at the University of Greenwich. He has a Ph.D. in computational aerodynamics and PDEs. His research interests include numerical PDEs, numerical algorithms, and parallel algorithms for industrial applications, such as aeroacoustics, inverse problems, computational finance, and image processing.

Xiao-Jun Wu is a professor at Jiangnan University. He has a Ph.D. in pattern recognition and intelligent systems. He has published more than 150 papers on pattern recognition, computer vision, fuzzy systems, neural networks, and intelligent systems.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagCRC Press
  • Erscheinungsdatum2011
  • ISBN 10 1439835764
  • ISBN 13 9781439835760
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten419
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Befriedigend
Your purchase helps support Sri...
Diesen Artikel anzeigen

EUR 4,59 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

EUR 11,69 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780367381936: Particle Swarm Optimisation: Classical and Quantum Perspectives: 16 (Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series)

Vorgestellte Ausgabe

ISBN 10:  0367381931 ISBN 13:  9780367381936
Verlag: Routledge, 2019
Softcover

Suchergebnisse für Particle Swarm Optimisation: Classical and Quantum...

Beispielbild für diese ISBN

Sun, Jun
Verlag: CRC Press, 2011
ISBN 10: 1439835764 ISBN 13: 9781439835760
Gebraucht Hardcover

Anbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Artikel-Nr. Z1-E-012-02388

Verkäufer kontaktieren

Gebraucht kaufen

EUR 89,92
Währung umrechnen
Versand: EUR 4,59
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sun, Jun (Author)/ Lai, Choi-Hong (Author)/ Wu, Xiao-Jun (Author)
Verlag: CRC Pr I Llc, 2011
ISBN 10: 1439835764 ISBN 13: 9781439835760
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 1st edition. 256 pages. 9.29x6.14x1.02 inches. In Stock. Artikel-Nr. __1439835764

Verkäufer kontaktieren

Neu kaufen

EUR 255,08
Währung umrechnen
Versand: EUR 11,69
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Jun Sun
ISBN 10: 1439835764 ISBN 13: 9781439835760
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - Although the particle swarm optimisation (PSO) algorithm requires relatively few parameters and is computationally simple and easy to implement, it is not a globally convergent algorithm. In Particle Swarm Optimisation: Classical and Quantum Perspectives, the authors introduce their concept of quantum-behaved particles inspired by quantum mechanics, which leads to the quantum-behaved particle swarm optimisation (QPSO) algorithm. This globally convergent algorithm has fewer parameters, a faster convergence rate, and stronger searchability for complex problems. The book presents the concepts of optimisation problems as well as random search methods for optimisation before discussing the principles of the PSO algorithm. Examples illustrate how the PSO algorithm solves optimisation problems. The authors also analyse the reasons behind the shortcomings of the PSO algorithm. Moving on to the QPSO algorithm, the authors give a thorough overview of the literature on QPSO, describe the fundamental model for the QPSO algorithm, and explore applications of the algorithm to solve typical optimisation problems.They also discuss some advanced theoretical topics, including the behaviour of individual particles, global convergence, computational complexity, convergence rate, and parameter selection. The text closes with coverage of several real-world applications, including inverse problems, optimal design of digital filters, economic dispatch problems, biological multiple sequence alignment, and image processing. MATLAB(R), Fortran, and C++ source codes for the main algorithms are provided on an accompanying CD-ROM. Helping you numerically solve optimisation problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. It not only explains how to use the algorithms, but also covers advanced topics that establish the groundwork for understanding state-of-the-art research in the field. Artikel-Nr. 9781439835760

Verkäufer kontaktieren

Neu kaufen

EUR 267,17
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb