Generalized Linear Mixed Models: Modern Concepts, Methods and Applications (Chapman & Hall/CRC Texts in Statistical Science)

3 durchschnittliche Bewertung
( 1 Bewertungen bei Goodreads )
 
9781439815120: Generalized Linear Mixed Models: Modern Concepts, Methods and Applications (Chapman & Hall/CRC Texts in Statistical Science)

Generalized Linear Mixed Models: Modern Concepts, Methods and Applications presents an introduction to linear modeling using the generalized linear mixed model (GLMM) as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider.

Along with describing common applications of GLMMs, the text introduces the essential theory and main methodology associated with linear models that accommodate random model effects and non-Gaussian data. Unlike traditional linear model textbooks that focus on normally distributed data, this one adopts a generalized mixed model approach throughout: data for linear modeling need not be normally distributed and effects may be fixed or random.

With numerous examples using SAS® PROC GLIMMIX, this book is ideal for graduate students in statistics, statistics professionals seeking to update their knowledge, and researchers new to the generalized linear model thought process. It focuses on data-driven processes and provides context for extending traditional linear model thinking to generalized linear mixed modeling.

See Professor Stroup discuss the book.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

About the Author:

Walter W. Stroup, Ph.D., is currently professor in the Department of Statistics at the University of Nebraska. His responsibilities include teaching statistical modeling, design of experiments, and research applications of mixed models in collaboration with researchers in agriculture, natural resources, medical and pharmaceutical sciences, education, and the behavioral sciences. Dr. Stroup received a B.A. degree in psychology from Antioch College, and M.S. and Ph.D. degrees in statistics from the University of Kentucky. He is widely published in statistical and applied journals and has participated in a number of symposia on issues in statistical consulting and statistical modeling. He has taught numerous short courses and workshops on generalized linear mixed models. A SAS user since 1975, Dr. Stroup is coauthor of SAS for Linear Models, Fourth Edition, SAS for Mixed Models, both editions. In additional, Dr. Stroup is author of Generalized Linear Mixed Models: Modern Concepts, Methods and Applications, an introduction to GLMMs that makes extensive use of SAS examples.

Review:

"The book focuses on data-driven modeling and design processes, and it provides a context for extending traditional linear model thinking to generalised linear mixed modeling. This is a very sound text which teachers of any course on GLMMs should consider adopting."
―Erkki P. Liski, International Statistical Review (2013), 81

"Walter Stroup is a leading authority on GLMMs for applied statisticians, especially as implemented in the SAS programming environment. He offers a thorough, engaging, and opinionated treatment of the subject ... I found the ‘fully general’ GLMM approach to modeling and design issues (Chapters 1 and 2) to be quite illuminating. ... it is best to use this text in conjunction with SAS. Prospective readers without current access to SAS will be pleased to know that a reasonable level of access to SAS is now available at no cost to students and teachers on the web ... If the reader prefers to work with GLMMs in the free, powerful, and state-of-the-art R environment, then he/she should supplement this text with some others that are built around R. I myself had good luck using Stroup’s text along with Julian Faraway’s two books Linear Models with R and Expanding the Linear Model with R, both published by CRC Press."
―Homer White, MAA Reviews, June 2013

"... for SAS users concerned with the analysis of trials, it is a very good resource. There are excellent discussions on many important concepts such as likelihood ratio testing and model selection criteria. PROC GLIMMIX is a powerful procedure implementing the rich family of GLMMs, and this book gives coverage to a wide variety of models with ample software illustration."
―Gillian Z. Heller, Australian & New Zealand Journal of Statistics, 2013

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben