Mathematical Methods for Partial Differential Equations is an introduction in the use of various mathematical methods needed for solving linear partial differential equations. The material is suitable for a two semester course in partial differential equations for mathematicians, engineers, physicists, chemistry and science majors and is suitable for upper level college undergraduates or beginning graduate students.
Chapter one reviews necessary background material from the subject area of ordinary differential equations and then develops solution techniques for some easy to solve partial differential equations. Chapter two introduces orthogonal functions and Sturm-Liouville systems. Chapter three utilizes orthogonal functions to develop Fourier series and Fourier integrals. The fourth, fifth and sixth chapters consider various applied engineering applications of partial differential equations. Selected applied topics are developed together with necessary solution methods associated with parabolic, hyperbolic and elliptic type partial differential equations. Chapter seven introduces transform methods for solving linear partial differential equations. Numerous examples associated with the Laplace, Fourier exponential, Fourier sine, Fourier cosine and selected finite Sturm-Liouville transforms are given. Chapter eight introduces Green’s functions for ordinary differential equations and chapter nine finishes with applications of Green function techniques for solving linear partial differential equations.
There are four Appendices. The Appendix A contains units of measurementsfrom the Système International d’Unitès along with some selected physical constants. The Appendix B contains solutions to selected exercises. The Appendix C lists mathematicians whose research has contributed to the area of partial differential equations. The Appendix D contains a short listing of integrals. The text has numerous illustrative worked examples and over 340 exercises.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. John H. Heinbockel is Professor Emeritus of Mathematics and Statistics from Old Dominion University, Norfolk, Virginia. He received his Ph.D. in applied mathematics from North Carolina State University in 1964. He joined Old Dominion University in 1967 and since then has taught a variety of mathematics courses at both the undergraduate and graduate level. He has had a variety of research grants during this time and is the author/co-author of numerous technical papers in the areas of applied mathematics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 25,00 für den Versand von Belgien nach USA
Versandziele, Kosten & DauerEUR 13,86 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781412003803_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Untje.com, Roeselare, Belgien
Paperback. Zustand: Fine. 576 pages illustrations ; 26 cm by J.H. Heinbockel. Includes bibliographical references (pages 542-543) and index. Differential equations Partial. Équations aux dérivées partielles. Differential equations Partial. Partiella differentialekvationer. Reference works. Reference works. Ouvrages de référence. English A technical reference book for mathematicians engineers physicists and scientists on solution techniques for partial differential equations"--Page 4 of cover Orthogonal functions -- Fourier series and integrals -- Parabolic equations -- Hyperbolic equations -- Elliptic equations -- Transform methods -- Green's functions for ODE's -- Green's functions for PDE's. Artikel-Nr. 10215402
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorDr. John H. Heinbockel is Professor Emeritus of Mathematics and Statistics from Old Dominion University, Norfolk, Virginia. He received his Ph.D. in applied mathematics from North Carolina State University in 1964. . Artikel-Nr. 447578668
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Mathematical Methods for Partial Differential Equations is an introduction in the use of various mathematical methods needed for solving linear partial differential equations. The material is suitable for a two semester course in partial differential equations for mathematicians, engineers, physicists, chemistry and science majors and is suitable for upper level college undergraduates or beginning graduate students.Chapter one reviews necessary background material from the subject area of ordinary differential equations and then develops solution techniques for some easy to solve partial differential equations. Chapter two introduces orthogonal functions and Sturm-Liouville systems. Chapter three utilizes orthogonal functions to develop Fourier series and Fourier integrals. The fourth, fifth and sixth chapters consider various applied engineering applications of partial differential equations. Selected applied topics are developed together with necessary solution methods associated with parabolic, hyperbolic and elliptic type partial differential equations. Chapter seven introduces transform methods for solving linear partial differential equations. Numerous examples associated with the Laplace, Fourier exponential, Fourier sine, Fourier cosine and selected finite Sturm-Liouville transforms are given. Chapter eight introduces Green's functions for ordinary differential equations and chapter nine finishes with applications of Green function techniques for solving linear partial differential equations.There are four Appendices. The Appendix A contains units of measurementsfrom the Système International d'Unitès along with some selected physical constants. The Appendix B contains solutions to selected exercises. The Appendix C lists mathematicians whose research has contributed to the area of partial differential equations. The Appendix D contains a short listing of integrals. The text has numerous illustrative worked examples and over 340 exercises.Libri GmbH, Europaallee 1, 36244 Bad Hersfeld 582 pp. Englisch. Artikel-Nr. 9781412003803
Anzahl: 2 verfügbar