In this book we are attempting to o?er a modi?cation of Dirac’s theory of the electron we believe to be free of the usual paradoxa, so as perhaps to be acceptable as a clean quantum-mechanical treatment. While it seems to be a fact that the classical mechanics, from Newton to E- stein’s theory of gravitation, o?ers a very rigorous concept, free of contradictions and able to accurately predict motion of a mass point, quantum mechanics, even in its simplest cases, does not seem to have this kind of clarity. Almost it seems that everyone of its fathers had his own wave equation. For the quantum mechanical 1-body problem (with vanishing potentials) let 1 us focus on 3 di?erent wave equations : (I) The Klein-Gordon equation 3 2 2 2 2 (1) ? ?/?t +(1??)? =0 , ? = Laplacian = ? /?x . j 1 This equation may be written as ? ? (2) (?/?t?i 1??)(?/?t +i 1??)? =0 . Hereitmaybenotedthattheoperator1??hasawellde?nedpositive square root as unbounded self-adjoint positive operator of the Hilbert 2 3 spaceH = L (R ).
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This work presents a "Clean Quantum Theory of the Electron", based on Dirac s equation. "Clean" in the sense of a complete mathematical explanation of the well known paradoxes of Dirac s theory, and a connection to classical theory, including the motion of a magnetic moment (spin) in the given field, all for a charged particle (of spin ½) moving in a given electromagnetic field.
This theory is relativistically covariant, and it may be regarded as a mathematically consistent quantum-mechanical generalization of the classical motion of such a particle, à la Newton and Einstein. Normally, our fields are time-independent, but also discussed is the time-dependent case, where slightly different features prevail. A "Schroedinger particle", such as a light quantum, experiences a very different (time-dependent) "Precise Predictablity of Observables". An attempt is made to compare both cases. There is not the Heisenberg uncertainty of location and momentum; rather, location alone possesses a built-in uncertainty of measurement.
Mathematically, our tools consist of the study of a pseudo-differential operator (i.e. an "observable") under conjugation with the Dirac propagator: such an operator has a "symbol" approximately propagating along classical orbits, while taking its "spin" along. This is correct only if the operator is "precisely predictable", that is, it must approximately commute with the Dirac Hamiltonian, and, in a sense, will preserve the subspaces of electronic and positronic states of the underlying Hilbert space.
Audience:
Theoretical Physicists, specifically in Quantum Mechanics.
Mathematicians, in the fields of Analysis, Spectral Theory of Self-adjoint differential operators, and Elementary Theory of Pseudo-Differential Operators
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 4,54 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerEUR 10,22 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich
Zustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Artikel-Nr. Z1-C-002-01800
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. xix + 275 Illus. Artikel-Nr. 7551589
Anzahl: 4 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-72524
Anzahl: 5 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-716
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 257051098
Anzahl: Mehr als 20 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-90107
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -In this book we are attempting to o er a modi cation of Dirac¿s theory of the electron we believe to be free of the usual paradoxa, so as perhaps to be acceptable as a clean quantum-mechanical treatment. While it seems to be a fact that the classical mechanics, from Newton to E- stein¿s theory of gravitation, o ers a very rigorous concept, free of contradictions and able to accurately predict motion of a mass point, quantum mechanics, even in its simplest cases, does not seem to have this kind of clarity. Almost it seems that everyone of its fathers had his own wave equation. For the quantum mechanical 1-body problem (with vanishing potentials) let 1 us focus on 3 di erent wave equations : (I) The Klein-Gordon equation 3 2 2 2 2 (1) / t +(1 ) =0 , = Laplacian = / x . j 1 This equation may be written as (2) ( / t i 1 )( / t +i 1 ) =0 . Hereitmaybenotedthattheoperator1 hasawellde nedpositive square root as unbounded self-adjoint positive operator of the Hilbert 2 3 spaceH = L (R ).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 288 pp. Englisch. Artikel-Nr. 9781402051685
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this book we are attempting to o er a modi cation of Dirac's theory of the electron we believe to be free of the usual paradoxa, so as perhaps to be acceptable as a clean quantum-mechanical treatment. While it seems to be a fact that the classical mechanics, from Newton to E- stein's theory of gravitation, o ers a very rigorous concept, free of contradictions and able to accurately predict motion of a mass point, quantum mechanics, even in its simplest cases, does not seem to have this kind of clarity. Almost it seems that everyone of its fathers had his own wave equation. For the quantum mechanical 1-body problem (with vanishing potentials) let 1 us focus on 3 di erent wave equations : (I) The Klein-Gordon equation 3 2 2 2 2 (1) / t +(1 ) =0 , = Laplacian = / x . j 1 This equation may be written as (2) ( / t i 1 )( / t +i 1 ) =0 . Hereitmaybenotedthattheoperator1 hasawellde nedpositive square root as unbounded self-adjoint positive operator of the Hilbert 2 3 spaceH = L (R ). Artikel-Nr. 9781402051685
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781402051685_new
Anzahl: Mehr als 20 verfügbar