Verwandte Artikel zu Integrable Problems of Celestial Mechanics in Spaces...

Integrable Problems of Celestial Mechanics in Spaces of Constant Curvature: 295 (Astrophysics and Space Science Library) - Hardcover

 
9781402015212: Integrable Problems of Celestial Mechanics in Spaces of Constant Curvature: 295 (Astrophysics and Space Science Library)

Inhaltsangabe

Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al­ gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa­ tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce­ lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al­ gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa­ tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce­ lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied.

Reseña del editor

This book combines a most interesting area of study, celestial mechanics, with modern geometrical methods in physics. According to recently developed views and research, one of the basic qualitative characteristics of an integrable Hamiltonian system is a structure of the Liouville foliation. A number of interesting results have been obtained. In particular, some of the constructed topological invariants did not appear in integrable cases investigated by many researchers earlier on. The topology of the isoenergy surfaces is also strongly different from what authors presented before. Some new topological effects in the problems of dynamics on spaces of constant curvature have been discovered. At present there are no other books published in this particular area.
This book is intended for specialists and post-graduate students in celestial mechanics, differential geometry and applications, and Hamiltonian mechanics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
Volume 295. This is an ex-library...
Diesen Artikel anzeigen

EUR 14,96 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

EUR 13,85 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789048163823: Integrable Problems of Celestial Mechanics in Spaces of Constant Curvature: 295 (Astrophysics and Space Science Library)

Vorgestellte Ausgabe

ISBN 10:  904816382X ISBN 13:  9789048163823
Verlag: Springer, 2010
Softcover

Suchergebnisse für Integrable Problems of Celestial Mechanics in Spaces...

Beispielbild für diese ISBN

Vozmischeva, T.G.
Verlag: Kluwer Academic, 2003
ISBN 10: 1402015216 ISBN 13: 9781402015212
Gebraucht Hardcover

Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. Volume 295. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,550grams, ISBN:9781402015212. Artikel-Nr. 9890176

Verkäufer kontaktieren

Gebraucht kaufen

EUR 47,51
Währung umrechnen
Versand: EUR 14,96
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Vozmischeva, T.G.
Verlag: Kluwer Academic, 2003
ISBN 10: 1402015216 ISBN 13: 9781402015212
Gebraucht Hardcover

Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,500grams, ISBN:9781402015212. Artikel-Nr. 5843929

Verkäufer kontaktieren

Gebraucht kaufen

EUR 63,09
Währung umrechnen
Versand: EUR 14,96
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Vozmischeva, T.G.
Verlag: Springer, 2003
ISBN 10: 1402015216 ISBN 13: 9781402015212
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781402015212_new

Verkäufer kontaktieren

Neu kaufen

EUR 116,23
Währung umrechnen
Versand: EUR 13,85
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Vozmischeva, T.G.
Verlag: Springer, 2003
ISBN 10: 1402015216 ISBN 13: 9781402015212
Gebraucht Hardcover

Anbieter: SpringBooks, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Very Good. Unread, with a mimimum of shelfwear. Immediately dispatched from Germany. Artikel-Nr. CEA-2311C-GRILLE-03-1000XS

Verkäufer kontaktieren

Gebraucht kaufen

EUR 48,36
Währung umrechnen
Versand: EUR 90,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

T. G. Vozmischeva
ISBN 10: 1402015216 ISBN 13: 9781402015212
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 200 pp. Englisch. Artikel-Nr. 9781402015212

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

T. G. Vozmischeva
ISBN 10: 1402015216 ISBN 13: 9781402015212
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied. Artikel-Nr. 9781402015212

Verkäufer kontaktieren

Neu kaufen

EUR 112,94
Währung umrechnen
Versand: EUR 62,36
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb