Verwandte Artikel zu Steiner Trees in Industry: 11 (Combinatorial Optimization)

Steiner Trees in Industry: 11 (Combinatorial Optimization) - Hardcover

 
9781402000997: Steiner Trees in Industry: 11 (Combinatorial Optimization)

Inhaltsangabe

This book is a collection of articles studying various Steiner tree prob­ lems with applications in industries, such as the design of electronic cir­ cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect­ ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Schreiber in 1986 found that this generalization (i.e., the Steiner mini­ mum tree) was first proposed by Gauss.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This book is a collection of articles studying various Steiner tree prob­ lems with applications in industries, such as the design of electronic cir­ cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect­ ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Schreiber in 1986 found that this generalization (i.e., the Steiner mini­ mum tree) was first proposed by Gauss.

Reseña del editor

This book is a collection of 16 state-of-the-art articles contributed by the most influential experts in the field of Steiner tree applications. The articles are designed to explore the impact on industries of the long-term theoretical development of Steiner tree problems. The authors address various Steiner tree problems originating from and applied to industry fields, such as the design of electronic circuits, telecommunication networks, computer networks, and computer biology. This book is a good reference tool for scientists who depend on Steiner tree problems in some way.
Audience: Researchers in computer science, mathematics, and electrical engineering, as well as students. This book is suitable for both specialists and uniformed readers.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 5,70 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Steiner Trees in Industry: 11 (Combinatorial Optimization)

Beispielbild für diese ISBN

Verlag: Springer, 2001
ISBN 10: 1402000995 ISBN 13: 9781402000997
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781402000997_new

Verkäufer kontaktieren

Neu kaufen

EUR 217,20
Währung umrechnen
Versand: EUR 5,70
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Cheng, Xiuzhen|Du, Ding-Zhu
Verlag: Springer US, 2001
ISBN 10: 1402000995 ISBN 13: 9781402000997
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. Artikel-Nr. 64772131

Verkäufer kontaktieren

Neu kaufen

EUR 227,74
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Xiuzhen Cheng
Verlag: Springer Us Okt 2001, 2001
ISBN 10: 1402000995 ISBN 13: 9781402000997
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - This book is a collection of articles studying various Steiner tree prob lems with applications in industries, such as the design of electronic cir cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Schreiber in 1986 found that this generalization (i.e., the Steiner mini mum tree) was first proposed by Gauss. Artikel-Nr. 9781402000997

Verkäufer kontaktieren

Neu kaufen

EUR 318,78
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb