Verwandte Artikel zu One, Two, Three: Absolutely Elementary Mathematics...

One, Two, Three: Absolutely Elementary Mathematics (Vintage) - Softcover

 
9781400079100: One, Two, Three: Absolutely Elementary Mathematics (Vintage)

Inhaltsangabe

The acclaimed author of A Tour of the Calculus and The Infinite Ascent offers an enlightening and enthralling tour of the basics of mathematics, and reveals a world of fascination in fundamental mathematical ideas.
 
One, Two, Three is David Berlinski’s captivating exploration of the foundation of mathematics, its fundamental ideas, and why they matter. By unraveling the complex answers to these most elementary questions—What is a number? How do addition, subtraction, and other functions actually work? What are geometry and logic?—Berlinski reveals the intricacy behind their seemingly simple exteriors. Peppered with enlightening historical anecdotes and asides on some of history’s most fascinating mathematicians, One, Two, Three, revels in the beauty of numbers as Berlinski shows us how and why these often slippery concepts are as essential to the field of mathematics as to who we are.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

David Berlinski received a B.A. from Columbia University and a Ph.D. from Princeton University. He has taught mathematics and philosophy at universities in the United States and France, and currently lives in Paris.

Auszug. © Genehmigter Nachdruck. Alle Rechte vorbehalten.

Introduction
 
This is a little book about absolutely elementary mathematics (AEM); and so a book about the natural numbers, zero, the negative numbers, and the fractions. It is neither a textbook, a treatise, nor a trot. I should like to think that this book acts as an anchor to my other books about mathematics.
 
Mathematicians have always imagined that mathematics is rather like a city, one whose skyline is dominated by three great towers, the state ministries of a powerful intellectual culture—our own, as it happens. They are, these great buildings, devoted to Geometry, Analysis, and Algebra: the study of space, the study of time, and the study of symbols and structures.
 
Imposing as Babylonian ziggurats, these buildings convey a sacred air.
 
The common ground on which they rest is sacred too, made sacred by the scuffle of human feet.
 
This is the domain of absolutely elementary mathematics.
 
Many parts of mathematics glitter alluringly. They are exotic. Elementary mathematics, on the other hand, evokes the very stuff of life: paying bills, marking birthdays, dividing debts, cutting bread, and measuring distances. It is earthy. Were textbooks to disappear tomorrow, and with them the treasures that they contain, it would take centuries to rediscover the calculus, but only days to recover our debts, and with our debts, the numbers that express them.
Elementary mathematics as it is often taught and sometimes used requires an immersion into messiness. Patience is demanded, pleasure deferred. Decimal points seem to wander, negative numbers become positive, and fractions stand suddenly on their heads.
 
And what is three-fourths divided by seven-eights?
 
The electronic calculator has allowed almost everyone to treat questions such as this with an insouciant indifference. Quick, accurate, and cheap, it does better what one hundred years ago men and women struggled to do well. The sense that in elementary mathematics things are familiar—half remembered, even if half forgotten—is comforting, and so are the calculator and the computer, faithful almost to a fault, but the imperatives of memory and technology do prompt an obvious question: why bother to learn what we already know or at least thought we knew?
 
The question embodies a confusion. The techniques of elementary mathematics are one thing, but their explanations are quite another. Everyone can add two simple natural numbers together—two and two, for instance. It is much harder to say what addition means and why it is justified. Mathematics explains the meaning and provides the justification. The theories that result demand the same combination of art and sophistication that is characteristic of any great intellectual endeavor.
 
It could so easily have been otherwise. Elementary mathematics, although pressing in its urgency, might have refused to cohere in its theory, so that, when laid out, it resembled a map in which roads diverged for no good reason or ended in a hopeless jumble. But the theory by which elementary mathematics is explained and its techniques are justified is intellectually coherent. It is powerful. It makes sense. It is never counter-intuitive. And so it is appropriate to its subject. If when it comes to the simplest of mathematical operations—addition again—there remains something that we do not understand, that is only because there is nothing in nature (or in life) that we understand as completely as we might wish.
 
Nonetheless, the theory that results is radical. Do not doubt it. The staples of childhood education are gone in the night. One idea is left, and so one idea predominates: that the calculations and concepts of absolutely elementary mathematics are controlled by the single act of counting by one. There is in this analysis an economy of effect, and a reduction of experience to its essentials, as dramatic as anything found in the physical sciences.
 
Until the end of the nineteenth century, this was not understood. A century later, it is still not widely understood. School instruction is of little help. “Please forget what you have learned in school,” the German mathematician Edmund Landau wrote in his book Foundations of Analysis; “you haven’t learned it.”
 
From time to time, I am going to ask that readers do some forgetting all their own.
 
 
A secret must now be imparted. It is one familiar to anyone writing about (or teaching) mathematics: no one very much likes the subject. It is best to say this at once. Like chess, mathematics has the power to command obsession but not often affection.
 
Why should this be—the distaste for mathematics, I mean?
 
There are two obvious reasons. Mathematics confronts the beginner with an aura of strangeness, one roughly in proportion to its use of arcane symbols. There is something about mathematical symbolism, a kind of peevishness, that while it demands patience, seems hardly to promise pleasure.
 
Why bother?
 
If the symbolic apparatus of mathematics is one impediment to its appreciation, the arguments that it makes are another. Mathematics is a matter of proof, or it is nothing. But certainty does not come cheap. There is often a remarkable level of detail in even a simple mathematical argument, and, what is worse, a maddening difference between the complicated structure of a proof and the simple and obvious thing it is intended to demonstrate. There is no natural number standing between zero and one. Who would doubt it? Yet it must be shown, and shown step by step. Diffi cult ideas are required.
 
Why bother?
 
A tricky bargain is inevitably involved. In mathematics, something must be invested before anything is gained, and what is gained is never quite so palpable as what has been invested. It is a bargain that many men and women reject.
 
Why bother indeed?
 
The question is not ignominious. It merits an answer.
 
In the case of many parts of mathematics, answers are obvious. Geometry is the study of space, the mysterious stuff between points. To be indifferent to geometry is to be indifferent to the physical world. This is one reason that high-school students have traditionally accepted Euclid with the grudging sense that they were being forced to learn something that they needed to know.
 
And algebra? The repugnance (in high school) that this subject evokes has always been balanced by the sense that its symbols have a magical power to control the flux and fleen of things. Farmers and fertilizers were the staple of ancient textbooks. But energy and mass figure in those that are modern. Einstein required only high-school algebra in creating his theory of special relativity, but he required high-school algebra, and he would have been lost without it.
 
Mathematical analysis came to the mature attention of European mathematicians in the form of the calculus. They understood almost at once that they had been vouchsafed the first and in some respects the greatest of scientific theories. To wonder at the importance of analysis, or to scoff at its claims, is to ignore the richest and most intensely developed body of knowledge acquired by the human race.
 
Yes, yes. This is all very uplifting, but absolutely elementary mathematics? Not very long ago, the French mathematician Alain Connes invented the term archaic mathematics to describe the place where ideas are primeval and where they have not yet separated themselves into disciplines. It is an elegant phrase, an apt description. And it indicates just why elementary mathematics, when seen properly, has the grandeur of what is absolute. It is fundamental, and so, like language, an instinctive gesture of the human race.
 
A theory of absolutely elementary mathematics is an account in modern terms of something deep in the imagination; its development over the centuries represents an extraordinary exercise in self-consciousness.
 
This is what justifies the bothering, the sense that, by seeing an old, familiar place through the mathematician’s eyes, we can gain the power to see it for the first time.
 
This is no little thing.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagKnopf Doubleday Publishing Group
  • Erscheinungsdatum2012
  • ISBN 10 1400079101
  • ISBN 13 9781400079100
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten222
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Ausreichend
Readable copy. Pages may have considerable...
Diesen Artikel anzeigen

EUR 3,76 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780375423338: One, Two, Three: Absolutely Elementary Mathematics

Vorgestellte Ausgabe

ISBN 10:  0375423338 ISBN 13:  9780375423338
Verlag: Pantheon Books, 2011
Hardcover

Suchergebnisse für One, Two, Three: Absolutely Elementary Mathematics...

Beispielbild für diese ISBN

Berlinski, David
ISBN 10: 1400079101 ISBN 13: 9781400079100
Gebraucht Paperback

Anbieter: ThriftBooks-Dallas, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Fair. No Jacket. Readable copy. Pages may have considerable notes/highlighting. ~ ThriftBooks: Read More, Spend Less 0.57. Artikel-Nr. G1400079101I5N00

Verkäufer kontaktieren

Gebraucht kaufen

EUR 6,03
Währung umrechnen
Versand: EUR 3,76
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Berlinski, David
ISBN 10: 1400079101 ISBN 13: 9781400079100
Gebraucht Paperback

Anbieter: ThriftBooks-Dallas, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.57. Artikel-Nr. G1400079101I4N00

Verkäufer kontaktieren

Gebraucht kaufen

EUR 6,03
Währung umrechnen
Versand: EUR 3,76
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Berlinski, David
ISBN 10: 1400079101 ISBN 13: 9781400079100
Gebraucht Paperback

Anbieter: ThriftBooks-Dallas, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 0.57. Artikel-Nr. G1400079101I3N00

Verkäufer kontaktieren

Gebraucht kaufen

EUR 6,03
Währung umrechnen
Versand: EUR 3,76
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Berlinski, David
ISBN 10: 1400079101 ISBN 13: 9781400079100
Gebraucht Softcover

Anbieter: Better World Books, Mishawaka, IN, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Artikel-Nr. 13234569-6

Verkäufer kontaktieren

Gebraucht kaufen

EUR 5,98
Währung umrechnen
Versand: EUR 6,31
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Berlinski, David
ISBN 10: 1400079101 ISBN 13: 9781400079100
Gebraucht Softcover

Anbieter: Better World Books, Mishawaka, IN, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Artikel-Nr. 10957852-6

Verkäufer kontaktieren

Gebraucht kaufen

EUR 5,98
Währung umrechnen
Versand: EUR 6,31
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Berlinski, David David Berlinski,
ISBN 10: 1400079101 ISBN 13: 9781400079100
Gebraucht paperback

Anbieter: AwesomeBooks, Wallingford, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Very Good. One, Two, Three: Absolutely Elementary Mathematics (Vintage) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . Artikel-Nr. 7719-9781400079100

Verkäufer kontaktieren

Gebraucht kaufen

EUR 10,57
Währung umrechnen
Versand: EUR 4,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

David Berlinski
ISBN 10: 1400079101 ISBN 13: 9781400079100
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. David Berlinski received a B.A. from Columbia University and a Ph.D. from Princeton University. He has taught mathematics and philosophy at universities in the United States and France, and currently lives in Paris.The acclaimed author . Artikel-Nr. 902380000

Verkäufer kontaktieren

Neu kaufen

EUR 19,21
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

David Berlinski
ISBN 10: 1400079101 ISBN 13: 9781400079100
Gebraucht Softcover

Anbieter: Wonder Book, Frederick, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. Good condition. A copy that has been read but remains intact. May contain markings such as bookplates, stamps, limited notes and highlighting, or a few light stains. Artikel-Nr. J12R-00964

Verkäufer kontaktieren

Gebraucht kaufen

EUR 5,24
Währung umrechnen
Versand: EUR 21,99
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Berlinski, David
Verlag: Vintage Books, 2012
ISBN 10: 1400079101 ISBN 13: 9781400079100
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 210 pages. 8.00x5.25x1.00 inches. In Stock. Artikel-Nr. x-1400079101

Verkäufer kontaktieren

Neu kaufen

EUR 20,48
Währung umrechnen
Versand: EUR 11,90
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb