Why Things Break: Understanding the World By the Way It Comes Apart - Softcover

Eberhart, Mark

 
9781400048830: Why Things Break: Understanding the World By the Way It Comes Apart

Inhaltsangabe

Did you know—

• It took more than an iceberg to sink the Titanic.
• The Challenger disaster was predicted.
• Unbreakable glass dinnerware had its origin in railroad lanterns.
• A football team cannot lose momentum.
• Mercury thermometers are prohibited on airplanes for a crucial reason.
• Kryptonite bicycle locks are easily broken.

“Things fall apart” is more than a poetic insight—it is a fundamental property of the physical world. Why Things Break explores the fascinating question of what holds things together (for a while), what breaks them apart, and why the answers have a direct bearing on our everyday lives.

When Mark Eberhart was growing up in the 1960s, he learned that splitting an atom leads to a terrible explosion—which prompted him to worry that when he cut into a stick of butter, he would inadvertently unleash a nuclear cataclysm. Years later, as a chemistry professor, he remembered this childhood fear when he began to ponder the fact that we know more about how to split an atom than we do about how a pane of glass breaks.

In Why Things Break, Eberhart leads us on a remarkable and entertaining exploration of all the cracks, clefts, fissures, and faults examined in the field of materials science and the many astonishing discoveries that have been made about everything from the explosion of the space shuttle Challenger to the crashing of your hard drive. Understanding why things break is crucial to modern life on every level, from personal safety to macroeconomics, but as Eberhart reveals here, it is also an area of cutting-edge science that is as provocative as it is illuminating.

“An engaging personal account not just of the physics and chemistry of materials but of the ethics, economics, and politics of innovation, with delightful bonuses on topics from the origins of ‘ghostly’ noises in old houses to the amazing coevolution of armor and armor-piercing projectiles. If it ain’t broke, Mark Eberhart can tell you why—and explain equally well why a shatterproof world remains beyond our reach.”
—Edward Tenner, author of Our Own Devices and Why Things Bite Back

“I don’t remember a book that has taught me so much, nor previously encountering a teacher like the marvelous Mark Eberhart, who in Why Things Break provides enlightening and thoroughly captivating scientific explanations of subjects ranging from the structural failures leading to the sinking of the Titanic to everyday, no-less-fascinating topics such as the reason why, even at the same temperature, winter days always seem so much colder in Boston than in Denver.”—Richard Restak, M.D., author of Mozart’s Brain and The Fighter Pilot

“Eberhart brings his insights to the reader by weaving personal anecdotes—from his childhood fear that cutting a stick of butter would release the energy of the atoms within to his arrival in Boston for an interview with MIT without a suitable winter coat—into a fascinating discussion of the forces that hold atoms and molecules together. A lively, unvarnished look at chemistry on the cutting edge.”
—Kirkus Reviews

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

MARK E. EBERHART is a professor of chemistry and geochemistry at the Colorado School of Mines. He received his doctorate in materials science from the Massachusetts Institute of Technology.

Von der hinteren Coverseite

Did you know--
- It took more than an iceberg to sink the Titanic.
- The Challenger disaster was predicted.
- Unbreakable glass dinnerware had its origin in railroad lanterns.
- A football team cannot lose momentum.
- Mercury thermometers are prohibited on airplanes for a crucial reason.
- Kryptonite bicycle locks are easily broken.
"Things fall apart" is more than a poetic insight--it is a fundamental property of the physical world. "Why Things Break explores the fascinating question of what holds things together (for a while), what breaks them apart, and why the answers have a direct bearing on our everyday lives.
When Mark Eberhart was growing up in the 1960s, he learned that splitting an atom leads to a terrible explosion--which prompted him to worry that when he cut into a stick of butter, he would inadvertently unleash a nuclear cataclysm. Years later, as a chemistry professor, he remembered this childhood fear when he began to ponder the fact that we know more about how to split an atom than we do about how a pane of glass breaks.
In "Why Things Break, Eberhart leads us on a remarkable and entertaining exploration of all the cracks, clefts, fissures, and faults examined in the field of materials science and the many astonishing discoveries that have been made about everything from the explosion of the space shuttle Challenger to the crashing of your hard drive. Understanding why things break is crucial to modern life on every level, from personal safety to macroeconomics, but as Eberhart reveals here, it is also an area of cutting-edge science that is as provocative as it is illuminating.
"An engaging personal account not just of the physicsand chemistry of materials but of the ethics, economics, and politics of innovation, with delightful bonuses on topics from the origins of 'ghostly' noises in old houses to the amazing coevolution of armor and armor-piercing projectiles. If it ain't broke, Mark Eberhart can tell you why--and explain equally well why a shatterproof world remains beyond our reach."
--Edward Tenner, author of "Our Own Devices and "Why Things Bite Back
"I don't remember a book that has taught me so much, nor previously encountering a teacher like the marvelous Mark Eberhart, who in "Why Things Break provides enlightening and thoroughly captivating scientific explanations of subjects ranging from the structural failures leading to the sinking of the Titanic to everyday, no-less-fascinating topics such as the reason why, even at the same temperature, winter days always seem so much colder in Boston than in Denver."--Richard Restak, M.D., author of "Mozart's Brain and" The Fighter Pilot
"Eberhart brings his insights to the reader by weaving personal anecdotes--from his childhood fear that cutting a stick of butter would release the energy of the atoms within to his arrival in Boston for an interview with MIT without a suitable winter coat--into a fascinating discussion of the forces that hold atoms and molecules together. A lively, unvarnished look at chemistry on the cutting edge."
--Kirkus Reviews

Aus dem Klappentext

Did you know

It took more than an iceberg to sink the Titanic.
The Challenger disaster was predicted.
Unbreakable glass dinnerware had its origin in railroad lanterns.
A football team cannot lose momentum.
Mercury thermometers are prohibited on airplanes for a crucial reason.
Kryptonite bicycle locks are easily broken.

Things fall apart is more than a poetic insightit is a fundamental property of the physical world. Why Things Break explores the fascinating question of what holds things together (for a while), what breaks them apart, and why the answers have a direct bearing on our everyday lives.

When Mark Eberhart was growing up in the 1960s, he learned that splitting an atom leads to a terrible explosionwhich prompted him to worry that when he cut into a stick of butter, he would inadvertently unleash a nuclear cataclysm. Years later, as a chemistry professor, he remembered this childhood fear when he began to ponder the fact that we know more about how to split an atom than we do about how a pane of glass breaks.

In Why Things Break, Eberhart leads us on a remarkable and entertaining exploration of all the cracks, clefts, fissures, and faults examined in the field of materials science and the many astonishing discoveries that have been made about everything from the explosion of the space shuttle Challenger to the crashing of your hard drive. Understanding why things break is crucial to modern life on every level, from personal safety to macroeconomics, but as Eberhart reveals here, it is also an area of cutting-edge science that is as provocative as it is illuminating.


From the Hardcover edition.

Auszug. © Genehmigter Nachdruck. Alle Rechte vorbehalten.

ATOMS, MARBLES, and FRACTURE


What incredible luck. The waitress had just unknowingly placed the most amazing water glass on our table. Halfway up the glass was a crack about two centimeters long. This was one of those fantastic cracks where neither end intersected a surface. These are stable and, if left alone, will simply hibernate. Water does not leak from these cracks, their presence is known only by the reflection of light from their surfaces. If disturbed, however, they wake up, sometimes violently, growing with incredible speed, often branching as they go, reducing whatever contained them in their quiescent state to a pile of razor-sharp shards.

Though the crack in this water glass was a rare find, it was even more remarkable in that it was oriented nearly parallel to the bottom of the glass. If gently awakened, the ends of this crack could be made to grow around the glass and meet at the same point, dividing the glass into two parts. Quickly downing the water, I used the handle of a butter knife to tap on the glass, ever so gently, near the tips of the crack. Too sharp a blow and the crack would become uncontrollable. With each tap, the crack grew slightly and stopped. Slowly the ends of the crack worked their way around the glass and, with no apparent sound, they joined. As if by magic, aided only by the butter knife "wand," the glass had been separated.

I was delighted with my carefully divided glass. My lunch companions, however, were less than pleased. I was, after all, with my impressionable young nieces and their parents. The looks on their faces suggested that I had just committed the most ill-conceived of social faux pas. Though this incident occurred nearly ten years ago, the breaking of the water glass is still a subject that causes my nieces and their parents to reflect on my integrity. My "crime" was a minor one. Indeed, the glass would not have survived even one more washing. The thermal strains caused by heating and cooling would have marked the end of the glass's useful life, and such a marvelous crack deserved a more significant death.

My interest in cracks and fracture began in early childhood, when I became fascinated by the idea that it might be possible to prevent things from breaking. I imagined what the world would be like if things never broke. In my child's mind, I pictured both the great and ordinary creations of humankind surviving the ages untouched and pristine. Little did I realize that this simple fantasy would direct my life and open doors I never thought existed.

Perhaps my interest was a by-product of growing up in the 1950s and 1960s. Every child lived with the fear that "the bomb" could be dropped at any minute. In school, it was common for a teacher to open the door of a classroom and yell, "Duck and cover!" In response to this warning, we students were expected to fling ourselves to the floor in a modified fetal position, with hands clasped across the back of the neck. In the absence of the requisite warning, the duck-and-cover position was to be assumed when we saw the blinding flash of an atomic-bomb explosion. I firmly believed that the duck-and-cover position would protect me from an atomic blast, but I knew the inanimate part of the world would surely be destroyed. After all, the purpose of duck-and-cover was to protect us from the flying pieces of objects broken by the blast. This seemed to be such an incredible waste. How could people work so hard to build things, only to see them destroyed? To me, making things that didn't break was one way around the destruction that nuclear war would bring.

The fear of pending nuclear annihilation may have seeded my interest in combating fracture, but the same fear also directed me down a path that would ultimately provide the tools necessary to achieve that goal. An axiom of the time was that "the power of the atomic bomb was unleashed by splitting the atom." This concerned me. If splitting a single atom were to cause an atomic explosion, was it possible that someone might inadvertently slice through one while using a knife or a pair of scissors? I pictured little mushroom clouds over thousands of dinner tables, each the result of an accident with a butter knife, but this never happened. Fortunately, the expected news story--"Today the John and Betty Smith family, their home, and the surrounding neighborhoods were demolished as John attempted to butter his bread"--never made the six-o'clock news. The only explanation for the absence of unintended nuclear blasts was that a butter knife was incapable of slicing through an atom. As a six-year-old, I began to construct a model that would explain this observation.

I envisioned the atoms of the butter as marbles spread out on the floor so that they just touched. Because everything was made from atoms, the edge of a knife could also be pictured as marbles, perhaps marbles of different sizes, peewees or boulders, but still marbles. The act of cutting the butter was like dragging the "knife" marbles through the other marbles on the floor. In my mind's eye, I picture holding a marble and pulling it through the marbles representing the butter. The knife would separate the marbles into two groups, but never would another marble be cut in half.

Though I slept easier knowing that making breakfast was unlikely to trigger Armageddon, a new question began to preoccupy me. There had to be something that held atoms together. If atoms were like marbles, they would just puddle out when taken out of their container. The knife was cutting not the marbles themselves, but whatever it was that held the atoms together.

I can't remember actually performing the marble experiment, and I doubt that I ever did; I valued my marbles too much to actually use them. Those of my friends who actually played the game had the most pitted and ugly marbles you could imagine. With only a few exceptions, my marbles remained as perfect as the day they were purchased. To me, a chipped one was worthless, having lost its value with its beauty. The exceptions were those marbles that were intentionally fractured to make them even more beautiful. The procedure is simple. Place a marble (a "cleary" is best; that's a marble made from a single piece of colored class, devoid of internal decoration) on a cookie sheet and heat in an oven to 250¡ F. Remove the marble when heated, and immediately drop it into cold water. Under these conditions, most marbles will respond by producing an array of internal fractures. The reflection of light from these internal surfaces produces an esthetically pleasing effect.

The problem with such marbles is that almost any blow will cause the cracks to run, leaving you with a pile of broken glass. They are useless from a utilitarian viewpoint; they can't even be carried in a marble bag for fear of shattering them. So, though I had come up with a method to preserve, and even extend, the beauty of my marbles, it was not a practical solution, since it required that they not be used. There had to be another way. Was it possible to make a glass marble that would not pit when used?

Having already developed an idea about what happens when something is cut, it took only a tiny step to picture what happened when something broke. Once again, I pictured the atoms of the glass as marbles packed together on the floor. This time a marble was shot at the pile, just as in the real game, dislodging other marbles from the central group. These dislodged marbles I thought of as the atoms of the broken chips of glass. If one wanted to make glass that would not chip, then whatever held the atoms of the glass together must be made stronger.

I still had no idea what held those atoms together. I had several small magnets, however, and I imagined the force holding the magnets together had...

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9781400047604: Why Things Break: Understanding the World by the Way It Comes Apart

Vorgestellte Ausgabe

ISBN 10:  1400047609 ISBN 13:  9781400047604
Verlag: Harmony Books, 2003
Hardcover