Verwandte Artikel zu Curiosa Mathematica, Vol. 1: A New Theory of Parallels...

Curiosa Mathematica, Vol. 1: A New Theory of Parallels (Classic Reprint) - Softcover

 
9781332008186: Curiosa Mathematica, Vol. 1: A New Theory of Parallels (Classic Reprint)

Inhaltsangabe

Excerpt from Curiosa Mathematica, Vol. 1: A New Theory of Parallels

If only it could be proved, with equal ease, that "there is a Triangle whose angles are together not-less than two right angles"! But alas, that is an ignis fatuus that has never yet been caught! The man, who first proves that Theorem, without using Euclid's 12th Axiom or any substitute for it, will certainly deserve a place among the world's great discoverers.

I take this opportunity of replying to one or two criticisms, which have been published, on the Second Edition - earnestly assuring the writers of those criticisms that, in treating the questions at issue between us from a not-wholly-solemn point of view, I have been actuated by no feeling of disrespect towards them, but simply from the wish to lighten a subject, naturally somewhat too heavy and sombre, and thus to make it a little more palatable to the general Reader.

At p. 12 of the and Edition, the enunciation of Prop. VI (which re-appears, in a modified form, at p. 34 of the 3rd Edition) stood thus: -

"If the vertical angle of a Sector of a Circle be divided by radii into 2n equal angles, thus forming 2n equal Sectors; and if the chord of each such Sector be not less than the radius of the Circle: the original Sector is not less than a times the Triangle cut off from it by its chords." My controversy with Nature on this enunciation, will be best given in the form of a dialogue. (Of course I quote verbatim.)

Nature. (Dec.6, 1888.) "How are the figures to be constructed, if n be greater than 2?"

About the Publisher

Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Excerpt from Curiosa Mathematica, Vol. 1: A New Theory of Parallels

Well, suppose u were equal to 4: i. E. We have to divide the vertical angle into 24 equal parts. Bisect it: that gives halves. Bisect the halves: that gives quarters. Bisect again: that gives eighths. Bisect once more that give sixteenths. Voila tout!

Nature. (june 13, Shade of Euclid! Who knows not such things? We admitted the same, but stated that our difficulty in the construction was the con dition imposed in the enunciation: viz., the chord of each such sector not less than the radius of the circle.' Take Mr. Dodgson's illustration of a sixteenth: this would necessitate that the original angle should be at least 960 we have further noted that no one of the chords in Mr. Dodgson's figures is even equal to the radius.

About the Publisher

Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com

This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.

Reseña del editor

Excerpt from Curiosa Mathematica, Vol. 1: A New Theory of Parallels

If only it could be proved, with equal ease, that "there is a Triangle whose angles are together not-less than two right angles"! But alas, that is an ignis fatuus that has never yet been caught! The man, who first proves that Theorem, without using Euclid's 12th Axiom or any substitute for it, will certainly deserve a place among the world's great discoverers.

I take this opportunity of replying to one or two criticisms, which have been published, on the Second Edition - earnestly assuring the writers of those criticisms that, in treating the questions at issue between us from a not-wholly-solemn point of view, I have been actuated by no feeling of disrespect towards them, but simply from the wish to lighten a subject, naturally somewhat too heavy and sombre, and thus to make it a little more palatable to the general Reader.

At p. 12 of the and Edition, the enunciation of Prop. VI (which re-appears, in a modified form, at p. 34 of the 3rd Edition) stood thus: -

"If the vertical angle of a Sector of a Circle be divided by radii into 2n equal angles, thus forming 2n equal Sectors; and if the chord of each such Sector be not less than the radius of the Circle: the original Sector is not less than a times the Triangle cut off from it by its chords." My controversy with Nature on this enunciation, will be best given in the form of a dialogue. (Of course I quote verbatim.)

Nature. (Dec.6, 1888.) "How are the figures to be constructed, if n be greater than 2?"

About the Publisher

Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com

This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780265425800: Curiosa Mathematica, Vol. 1: A New Theory of Parallels (Classic Reprint)

Vorgestellte Ausgabe

ISBN 10:  0265425808 ISBN 13:  9780265425800
Verlag: Forgotten Books, 2018
Hardcover

Suchergebnisse für Curiosa Mathematica, Vol. 1: A New Theory of Parallels...

Beispielbild für diese ISBN

Charles L. Dodgson
Verlag: Forgotten Books, 2018
ISBN 10: 1332008186 ISBN 13: 9781332008186
Neu PAP

Anbieter: PBShop.store US, Wood Dale, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. LW-9781332008186

Verkäufer kontaktieren

Neu kaufen

EUR 20,60
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Charles L. Dodgson
Verlag: Forgotten Books, 2018
ISBN 10: 1332008186 ISBN 13: 9781332008186
Neu PAP

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. LW-9781332008186

Verkäufer kontaktieren

Neu kaufen

EUR 18,53
Währung umrechnen
Versand: EUR 4,79
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Foto des Verkäufers

Dodgson, Charles L.
Verlag: LULU PR, 2018
ISBN 10: 1332008186 ISBN 13: 9781332008186
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. KlappentextrnrnExcerpt from Curiosa Mathematica, Vol. 1: A New Theory of ParallelsWell, suppose u were equal to 4: i. E. We have to divide the vertical angle into 24 equal parts. Bisect it: that gives halves. Bisect the halves: that give. Artikel-Nr. 2147915308

Verkäufer kontaktieren

Neu kaufen

EUR 22,69
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Charles L. Dodgson
Verlag: Forgotten Books Apr 2018, 2018
ISBN 10: 1332008186 ISBN 13: 9781332008186
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware. Artikel-Nr. 9781332008186

Verkäufer kontaktieren

Neu kaufen

EUR 26,53
Währung umrechnen
Versand: EUR 61,48
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb